Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

The systematic parameter optimization in the Nd:YAG laser beam welding of Inconel 625


This paper presents process parameter optimization for the laser welding of 0.5-mm-thick Inconel 625. The effect of laser parameters such as laser power (LP), spot size (SS), and welding speed (WS) on weld strength (WST) and microhardness of the welds has been investigated using the response surface methodology (RSM). A three-level design with 20 experimental runs was used. The analysis of variance (ANOVA) was performed and mathematical models were developed to predict the effect of input parameters on the responses. Results indicated that the maximum weld strength of 1280 MPa can be obtained when LP, WS, and SS are set at the optimum values of 260 W, 1.2 mm/s, and 180 μm, respectively. LP of 230 W, WS of 6 mm/s, and SS of 540 μm also resulted in minimum microhardness deviation (MHD) from that of the base metal. Higher heat input caused deeper penetration of weld joint and so higher WST. Formation of Laves phase in samples that receives higher energy density resulted in increase of microhardness and so MHD.

This is a preview of subscription content, log in to check access.


  1. 1.

    Cai D, Nie P, Shan J, Liu W, Gao Y, Yao M (2006) Precipitation and residual stress relaxation kinetics in shot-peened Inconel 718. J Mater Eng Perform 15(5):614–617

  2. 2.

    Mathew MD, Parameswaran P, Rao KBS (2008) Microstructural changes in alloy 625 during high temperature creep. Mater Charact 59(5):508–513

  3. 3.

    Silva CC, de Miranda HC, Motta MF, Farias JP, Afonso MCR, Ramirez AJ (2013) New insight on the solidification path of an alloy 625 weld overlay. J Mater Res Technol 32:1–10

  4. 4.

    Shankar V, Rao SKB, Mannan SL (2001) Microstructure and mechanical properties of Inconel 625 superalloy. J Nucl Mater 288:222–232

  5. 5.

    Kuo CP, Ling CC, Chen SH, Chang CW (2005) The prediction of cutting force in milling Inconel-718. Int J Adv Manuf Technol 27:655–660

  6. 6.

    Zaharinie T, Yusof F, Hamdi M, Ariga T, Moshwan R (2014) Effect of brazing temperature on the shear strength of Inconel 600 joint. Int J Adv Manuf Technol 73:1133–1140

  7. 7.

    Egbewande AT, Buckson RA, Ojo OA (2010) Analysis of laser beam weldability of Inconel 738 superalloy. Mater Charact 61:569–574

  8. 8.

    Pandey AK, Dubey AK (2013) Modeling and optimization of kerf taper and surface roughness in laser cutting of titanium alloy sheet. J Mech Sci Technol 27(7):2115–2124

  9. 9.

    Huang Q, Hagstroem J, Skoog H, Kullberg G (2009) Effect of laser parameter variation on sheet metal welding. Int J Join Mater 3(1991):79–88

  10. 10.

    Yang YK, Chuang MT, Lin SS (2009) Optimization of dry machining parameters for high-purity graphite in end milling process via design of experiments methods. J Mater Process Technol 209:4395–4400

  11. 11.

    Alrbaey K, Wimpenny D, Tosi R, Manning W, Moroz A (2014) On optimization of surface roughness of selective laser melted stainless steel parts: a statistical study. J Mater Eng Perform 23:2139–2148

  12. 12.

    Kim C, Choi W, Kim J, Rhee S (2008) Relationship between the weldability and the process parameters for laser-TIG hybrid welding of galvanized steel sheets. Mater Transp 49:179–186

  13. 13.

    Khan MMA, Romoli L, Fiaschi M, Dini G, Sarri F (2011) Experimental design approach to the process parameter optimization for laser welding of martensitic stainless steels in a constrained overlap configuration. Opt Laser Technol 43:158–172

  14. 14.

    Janaki Ram GD, Reddy AV, Rao KP (2005) Microstructure and tensile properties of Inconel 718 pulsed Nd:YAG laser welds. J Mater Process Technol 167:73–82

  15. 15.

    Cao X, Rivaux B, Jahazi M, Cuddy J, Birur A (2009) Effect of pre- and post-weld heat treatment on metallurgical and tensile properties of Inconel 718 alloy butt joints welded using 4 kW Nd:YAG laser. J Mater Sci 44:4557–4571

  16. 16.

    Egbewande AT, Zhang HR, Sidhu RK, Ojo OA (2009) Improvement in laser weldability of INCONEL 738 superalloy through microstructural modification. Metall Mater Trans 40A:2694–2704

  17. 17.

    Amato KN, Hernandez J, Murr LE, Martinez E, Gaytan SM, Shindo PW (2012) Comparison of microstructures and properties for a Ni-base superalloy (alloy 625) fabricated by electron and laser beam. J Mater Sci Res 1:3–41

  18. 18.

    Xu F, Lv Y, Liu Y, Shu F, He P, Xu B (2013) Microstructural evolution and mechanical properties of Inconel 625 alloy during pulsed plasma arc deposition process melting. J Mater Sci Technol 29(5):480–488

  19. 19.

    Abioye TE, Folkes J, Clare AT (2013) A parametric study of Inconel 625 wire laser deposition. J Mater Process Technol 213:2145–2151

  20. 20.

    Pan LK, Wang CC, Hsiao YC, Ho KC (2005) Optimization of Nd:YAG laser welding onto magnesium alloy via Taguchi analysis. Opt Laser Technol 37(1):33–42

  21. 21.

    Lee HK, Han HS, Son KJ, Hong SB (2006) Optimization of Nd:YAG laser welding parameters for sealing small titanium tube ends. Mater Sci Eng 415(1–2):149–155

  22. 22.

    Salonitis K, Stavropoulos P, Fysikopoulos A, Chryssolouris G (2013) CO2 laser butt-welding of steel sandwich sheet composites. Int J Adv Manuf Technol 69(1–4):245–256

  23. 23.

    Montgomery DC (2004) Design and analysis of experiments, 6th edn. John Wiley and Sons, New York

  24. 24.

    Qu F-S, Liu X-G, Xing F, Zhang K-F (2012) High temperature tensile properties of laser butt-welded plate of Inconel 718 superalloy with ultra-fine grains. Trans Nonferrous Metals Soc China 22:2379–2388

  25. 25.

    Chen HC, Pinkerton AJ, Li L (2011) Fibre laser welding of dissimilar alloys of Ti-6Al-4V and Inconel 718 for aerospace applications. Int J Adv Manuf Technol 52:977–987

  26. 26.

    Acherjee B, Misra D, Bose D, Venkadeshwaran K (2009) Prediction of and seam width for laser transmission welding of thermoplastic using response surface methodology. Opt Laser Technol 41:956–967

  27. 27.

    Park YW, Rhee S (2008) Process modeling and parameter optimization using neural network and genetic algorithms for aluminum laser welding automation. Int J Adv Manuf Technol 37:1014–1021

  28. 28.

    Nakhaei MR, Mostafa Arab NB, Naderi G (2013) Application of response surface methodology for prediction in laser welding of polypropylene/clay nanocomposite. Iran Polym J 22:351–360

  29. 29.

    Standard test methods for tension testing of metallic materials, E 8M–04, annual book of ASTM Standards, ASTM, 1–24

  30. 30.

    Han WJ, Byeon JG, Park KS (2001) Welding characteristics of the Inconel plate using a pulsed Nd: YAG laser beam. J Mater Process Technol 113:234–237

  31. 31.

    Childs THC, Berzins M, Ryder GR, Tontowi AE (1999) Selective laser sintering of an amorphous polymer: simulations and experiments. Proc Inst Mech Eng B J Eng Manuf 213:333–349

  32. 32.

    Naffakh-Moosavy H, Aboutalebi M-R, Seyedein SH (2012) An analytical algorithm to predict weldability of precipitation-strengthened nickel-base superalloys. J Mater Process Technol 212:2210–2218

Download references

Author information

Correspondence to N. B. Mostafa Arab.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Jelokhani-Niaraki, M.R., B. Mostafa Arab, N., Naffakh-Moosavy, H. et al. The systematic parameter optimization in the Nd:YAG laser beam welding of Inconel 625. Int J Adv Manuf Technol 84, 2537–2546 (2016).

Download citation


  • Laser welding
  • Inconel 625
  • Response surface methodology
  • Weld strength
  • Microhardness