Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Effects of friction model on forging process of Ti-6Al-4V turbine blade considering the influence of sliding velocity

  • 276 Accesses

  • 7 Citations

Abstract

This work is motivated by the fact that one key parameter of sliding velocity at die-workpiece interface in numerical analysis of blade forging process is usually ignored, thereby resulting in poor prediction accuracy and limited application of friction model. A realistic description of the friction boundary conditions shows great practical importance for the usability of simulation results. In this paper, an advanced friction model named IFUM considering the influence of sliding velocity is introduced in the simulation of Ti-6Al-4V turbine blade forging operation, and its effects on metal flow and forging forces are compared and evaluated with two traditional friction models. The results indicate that the Institute of Metal Forming and Metal-Forming Machines (IFUM) friction model gives the better match with the experimental results than the traditional ones, in which the material flow velocity distribution and forging forces characterized by the sliding velocity are found to be more uneven and smaller, respectively. This research improves the accuracy of the simulation results and can be served as a basis for design and optimization of blade forging process.

This is a preview of subscription content, log in to check access.

References

  1. 1.

    Liu YL, Yang H, Zhan M, Fu ZX (2002) A study of the influence of the friction conditions on the forging process of a blade with a tenon. J Mater Process Technol 123(1):42–46

  2. 2.

    Lu B, Ou H, Armstrong CG, Rennie A (2009) 3D die shape optimisation for net-shape forging of aerofoil blades. Mater Des 30(7):2490–2500

  3. 3.

    Shao Y, Lu B, Ou H, Chen J (2015) A new approach of preform design for forging of 3D blade based on evolutionary structural optimization. Struct Multidiscip Optim 51(1):199–211

  4. 4.

    Torabi SHR, Alibabaei S, Bonab BB, Sadeghi MH, Faraji GH (2015) Design and optimization of turbine blade preform forging using RSM and NSGA II. J Intell Manuf. doi:10.1007/s10845-015-1058-0

  5. 5.

    Menezes PL, Kumar K, Kailas SV (2009) Influence of friction during forming processes-a study using a numerical simulation technique. Int J Adv Manuf Technol 40(11-12):1067–1076

  6. 6.

    Argyris JH, Doltsinis JS, Luginsland J (1986) Three-dimensional thermomechanical analysis of metal forming processes. Springer, Berlin, pp 125–160

  7. 7.

    Kang BS, Kim N, Kobayashi S (1990) Computer-aided preform design in forging of an airfoil section blade. Int J Mach Tools Manuf 30(1):43–52

  8. 8.

    Han XH, Hua L (2012) Friction behaviors in cold rotary forging of 20CrMnTi alloy. Tribol Int 55:29–39

  9. 9.

    Von Karman T (1925) On the theory of rolling. Z Angew Math Mech 5:129–141

  10. 10.

    Siebel E (1930) Resistance and deformation and the flow material during rolling. Stahl Eisen 50:1769–1775

  11. 11.

    Lv C, Zhang LW, Mu ZJ, Tai QG, Zheng QY (2008) 3D FEM simulation of the multi-stage forging process of a gas turbine compressor blade. J Mater Process Technol 198(1):463–470

  12. 12.

    Huang SH, Zong YY, Shan DB (2013) Application of thermohydrogen processing to Ti6Al4V alloy blade isothermal forging. Mater Sci Eng A 561:17–25

  13. 13.

    Puertas I, Luis Pérez CJ, Salcedo D, León J, Fuertes JP, Luri R (2013) Design and mechanical property analysis of AA1050 turbine blades manufactured by equal channel angular extrusion and isothermal forging. Mater Des 52:774–784

  14. 14.

    Zhuang WH, Hua L, Wang XW, Liu YX, Han XH, Dong LY (2015) Numerical and experimental investigation of roll-forging of automotive front axle beam. Int J Adv Manuf Technol. doi:10.1007//s00170-015-6905-9

  15. 15.

    Wen T, Ou WX, Liu Q, Zhang P, Yang C (2015) Predication and analysis of positioning status of large-scale billets on forging dies using multi-body dynamics simulation. Int J Adv Manuf Technol. doi:10.1007//s00170-015-7022-5

  16. 16.

    Orowan E (1943) The calculation of roll pressure in hot and cold flat rolling. Proc Inst Mech Engrs 150:140–167

  17. 17.

    Martinez HV, Coupard D, Girot F (2006) Constitutive model of the alloy 2117-T4 at low strain rates and temperatures. J Mater Process Technol 173(3):252–259

  18. 18.

    Calamaz M, Coupard D, Girot F (2008) A new material model for 2D numerical simulation of serrated chip formation when machining titanium alloy Ti-6Al-4V. Int J Mach Tools Manuf 48(3):275–288

  19. 19.

    Ghassemali E, Tan MJ, Lim SCV, Wah CB, Jarfors AEW (2014) Experimental and simulation of friction effects in an open-die microforging/extrusion process. J Micro Nano-Manuf. doi:10.1115/1.4026518

  20. 20.

    Yang DY, Lee NK, Yoon JH (1993) A three-dimensional simulation of isothermal turbine blade forging by the rigid-viscoplastic finite-element method. J Mater Eng Perform 2(1):119–124

  21. 21.

    Yang H, Zhan M, Liu YL (2002) A 3D rigid–viscoplastic FEM simulation of the isothermal precision forging of a blade with a damper platform. J Mater Process Technol 122(1):45–50

  22. 22.

    Zhan M, Yang H, Liu YL (2004) Deformation characteristic of the precision forging of a blade with a damper platform using 3D FEM analysis. J Mater Process Technol 150(3):290–299

  23. 23.

    Behrens BA, Bouguecha A, Hadifi T, Mielke J (2011) Advanced friction modeling for bulk metal forming processes. Prod Eng 5(6):621–627

  24. 24.

    Sedighi M, Tokmechi S (2008) A new approach to preform design in forging process of complex parts. J Mater Process Technol 197(1):314–324

  25. 25.

    Kocańda A, Czyżewski P, Mehdi KH (2009) Numerical analysis of lateral forces in a die for turbine blade forging. Arch Civ Mech Eng 9(4):49–54

  26. 26.

    Khalilpourazary S, Dadvand A, Azdast T, Sadeghi MH (2011) Design and manufacturing of a straight bevel gear in hot precision forging process using finite volume method and CAD/CAE technology. Int J Adv Manuf Technol 56(1-4):87–95

  27. 27.

    Balasundar I, Raghu T (2010) Effect of friction model in numerical analysis of equal channel angular pressing process. Mater Des 31(1):449–457

  28. 28.

    Yu HQ, Chen JD (1999) Principles of metal forming. China Machine Press, Beijing (in Chinese)

  29. 29.

    Yuan L, Zhao Z, Shi WC, Xu FC, Shan DS (2015) Isothermal forming of the large-size AZ80A magnesium ally forging with high mechanical properties. Int J Adv Manuf Technol. doi:10.1007//s00170-014-6780-9

  30. 30.

    Liu YL, Du K, Zhan M, Yang H, Zhang FW (2000) Physical modeling of blade forging. J Mater Process Technol 99(1-3):141–144

  31. 31.

    Morita A, Hattori S, Tani K, Takemura A, Ashida Y (1991) Near net shape forging of titanium alloy turbine blade. ISIJ Int 31:824–833

  32. 32.

    Kim HS (2001) Finite element analysis of equal channel angular pressing using a round corner die. Mater Sci Eng A 315(1):122–128

  33. 33.

    Salcedo D, Luis C, León J, Puertas I, Fuertes J, Luri R (2014) Manufacturing of nanostructured blades for a Francis turbine by isothermal forging of AA6063. J Manuf Sci Eng 136(1):011009

  34. 34.

    Liu YL, Yang H, Gao T (2007) Effects of friction on precision forging process of blade with a damper platform. Mater Sci Forum 561:831–834

Download references

Author information

Correspondence to Dahu Zhu.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Luo, S., Zhu, D., Qian, D. et al. Effects of friction model on forging process of Ti-6Al-4V turbine blade considering the influence of sliding velocity. Int J Adv Manuf Technol 82, 1993–2002 (2016). https://doi.org/10.1007/s00170-015-7538-8

Download citation

Keywords

  • Blade forging
  • Friction model
  • Sliding velocity
  • Forces
  • Numerical simulation