Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Automatic programming for industrial robot to weld intersecting pipes

  • 495 Accesses

  • 20 Citations

Abstract

An articulated robot cooperated with a positioner is widely used in the field of intersecting pipes welding. In order to resolve the bottlenecks in productivity caused by the burdensome manual teaching process, this article presents an algorithm to generate motion codes for industrial robot to weld intersecting pipes. A unique welding scheme that simplifies welding technology complexity is introduced and adopted. Based on the geometrical model of intersecting pipes with the most complex intersecting mode, the welding trajectory planning is developed which contains posture planning of the welding torch and weaving welding control strategy. Then the welding trajectory is decomposed into the motion of the robot torch and the positioner, and the spatial relationship between the torch and the robot base is described with homogeneous transformation matrix. Finally, an algorithm flow chart with welding speed control strategy is provided for generating robot motion codes. Simulation and welding experiment verify the feasibility of the algorithm.

This is a preview of subscription content, log in to check access.

References

  1. 1.

    Novak-Marcincin J, Barna J, Torok J, Novakova-Marcincinova L (2013) Definition of computer aided manufacturing engineering and its place in CA systems chain. In: SAMI 2013: IEEE 11th International Symposium and Applied Machine Intelligence and Informatics. doi:10.1109/SAMI.2013.6480989

  2. 2.

    Nagata F, Yoshitake S, Otsuka A, Watanabe K, Habib MK (2013) Development of CAM system based on industrial robotic servo controller without using robot language. Robot Comput Integr Manuf 29(2):454–462. doi:10.1016/j.rcim.2012.09.015

  3. 3.

    Madsen O, Sorensen CB, Larsen R, Overgaard L, Jacobsen NJ (2002) A system for complex robotic welding. Ind Robot Int J 29(2):41–48. doi:10.1108/01439910210419132

  4. 4.

    Yao T, Gai YX, Liu HY (2010) Development of a robot system for pipe welding. ICMTMA 2010 Int Conf Meas Technol Mechatron Autom 1:1109–1112. doi:10.1109/ICMTMA.2010.743

  5. 5.

    Ren FS, Chen SJ, Yin SY, Guan XY (2008) Modeling on weld position and welding torch pose in welding of intersected pipes. Trans China Weld Inst 29(11):33–36

  6. 6.

    Liu Y, Zhao J, Chen SJ, Lu ZY (2010) Type and dimension synthesis of a portable all-position welding robot. Ind Robot Int J 37(3):293–301. doi:10.1108/01439911011037703

  7. 7.

    Chen CL, Hu SS, He DL, Shen JQ (2013) An approach to the path planning of tube-sphere intersection welds with the robot dedicated to J-groove joints. Robot Comput Integr Manuf 29(4):41–48. doi:10.1016/j.rcim.2012.10.006

  8. 8.

    Lu Y, Tian XC, Liang J (2010) Track control in automated welding of saddle curve. J Sci Ind Res 69(11):811–817

  9. 9.

    Liu Y, Zhao J, Lu ZY, Chen SJ (2011) Pose planning for the end-effector of robot in the welding of intersecting pipes. Chin J Mech Eng (English Edition) 24(2):264–270. doi:10.3901/CJME.2011.02.264

  10. 10.

    Chen YH, Dong FH (2013) Robot machining: recent development and future research issues. International Journal of Advanced Manufacturing Technology 66(9-12):1489–1497. doi:10.1007/s00170-012-4433-4

  11. 11.

    Song YX, Yang HJ, Lv HB (2013) Intelligent control for a robot belt grinding system. IEEE Transactions on Control Systems Technology 21(3):716–724. doi:10.1109/TCST.2012.2191587

  12. 12.

    Shi L, Tian XC (2014) Automation of main pipe-rotating welding scheme for intersecting pipes. Int J Adv Manuf Technol 77(5-8):955–964. doi:10.1007/s00170-014-6526-8

  13. 13.

    Kang N, Mahank TA, Kulkarni AK, Singh J (2003) Effects of gravitational orientation on surface deformation and weld pool geometry during gas tungsten arc welding. Mater Manuf Process 18(2):169–180. doi:10.1081/AMP-120018903

  14. 14.

    Minnick WH (2007) Gas metal arc welding handbook. Goodheart-Willcox, Chicago

  15. 15.

    Edward RF (1985) Handbook of welding. Breton, Boston

  16. 16.

    Pan ZX, Polden J, Larkin N, Duin SV, Norrish J (2014) Recent progress on programming methods for industrial robots. Robot Comput Integr Manuf 28(2):87–94. doi:10.1016/j.rcim.2011.08.004

  17. 17.

    Neto P, Mendes N (2003) Direct off-line robot programming via a common CAD package. Robot Auton Syst 61(8):896–910. doi:10.1016/j.robot.2013.02.005

  18. 18.

    Zhuang HQ, Roth ZS, Sudhakar R (1994) Simultaneous robot/world and tool/flange calibration by solving homogeneous transformation equations of the form AX = YB. IEEE Trans Robot Autom 10(4):549–554. doi:10.1109/70.313105

  19. 19.

    Chen YX, He YS, Chen HB, Zhang HJ, Chen SB (2014) Effect of weave frequency and amplitude on temperature field in weaving welding process. Int J Adv Manuf Technol 75(5-8):803–813. doi:10.1007/s00170-014-6157-0

  20. 20.

    Craig JJ (2003) Introduction to Robotics: mechanics and Control, 3rd Edition. Prentice Hall, London

Download references

Author information

Correspondence to Xincheng Tian.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Shi, L., Tian, X. & Zhang, C. Automatic programming for industrial robot to weld intersecting pipes. Int J Adv Manuf Technol 81, 2099–2107 (2015). https://doi.org/10.1007/s00170-015-7331-8

Download citation

Keywords

  • Industrial robot
  • Intersecting pipes
  • Weld
  • Off-line programming