Advertisement

Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Automatic part localization in a CNC machine coordinate system by means of 3D scans

  • 370 Accesses

  • 10 Citations

Abstract

Due to the rough nature of surfaces produced by current additive metal processes, a deviation between the nominal and actual pose of the part arises when fixturing in an NC machine. Modern 3D scanning systems are capable of generating high density measurements that may be used to localize the part and compensate for these errors; but require that scan data be transformed from the scanner to the CNC coordinate systems. In this work, precisely located fiducial features are automatically detected in the scan data and used to compute the pose of the scanner. This information is used to register each scan to the CNC machine space, and thereby create a model of the workpiece as-built and as-mounted in the machine, for use in process planning and localization. An implementation of the system was built and tested against a machined part that was offset to simulate uncertain position and orientation. The initial performance evaluation of the system indicates that it is capable of successfully registering surfaces to the machine coordinate system with accuracy in line with the scanner performance specification.

This is a preview of subscription content, log in to check access.

References

  1. 1.

    McMurtry DR (1979) Contact-sensing probe, U.S. Classification: 33/561 International Classification: G01B 702

  2. 2.

    McMurtry DR (1982) Coordinate measuring machine. U.S. Classification: 33/504; 33/503; 33/520 International Classification: G01B 700; G01B 728

  3. 3.

    Renishaw (2014a) Renishaw – Probing systems and software. http://www.renishaw.com/en/probing-systems-and-software--12466. Accessed 2014-11-13

  4. 4.

    Zurbrick John R, Kelley J R (1984) Tool touch probe method of precision machining. U.S. Classification: 700/160; 318/572; 408/11; 702/56; 702/97 International Classification: G06F 1546

  5. 5.

    Eric W, Grimson L, Lozano-Pérez T (1984) Model-based recognition and localization from sparse range or tactile data. Int J Robot Res 3(3):3–35

  6. 6.

    Gunnarsson KT, Prinz FB (August 1987) Cad model-based localization of parts in manufacturing. Computer; (United States) 20:8

  7. 7.

    Sahoo KC, Menq C-H (1991) Localization of 3-D objects having complex sculptured surfaces using tactile sensing and surface. J Eng Ind 113:85

  8. 8.

    Li Z, Gou J, Chu Y (1998) Geometric algorithms for workpiece localization. IEEE Trans Robot Autom 14(6):864–878

  9. 9.

    Chakraborty D, De M, Szuba PS (2001a) Part location algorithms for an intelligent fixturing system part 1: System description and algorithm development. J Manuf Syst 20(2):124–134

  10. 10.

    Chakraborty D, Edward C, De M, Szuba PS (2001b) Part location algorithms for an intelligent fixturing system part 2: Algorithm testing and evaluation. J Manuf Syst 20(2):135–148

  11. 11.

    Xin HX, Jia LC, Dun MQ (June 2014) Directly manufacturing mouse mold by plasma deposition manufacturing. Adv Mater Res 941-944:2190–2193

  12. 12.

    Sunil VB, Pande SS (2008) Automatic recognition of features from freeform surface CAD models. Comput Aided Des 40(4):502–517

  13. 13.

    Spyridi AJ, Requicha AAG (1990) Accessibility analysis for the automatic inspection of mechanical parts by coordinate measuring machines. In: 1990 IEEE international conference on robotics and automation, 1990. Proceedings, vol. 2, pp 1284–1289

  14. 14.

    Merat FL, Gerald MR (1992) Automatic inspection planning within a feature-based CAD system. Robot Comput Integr Manuf 9(1):61–69

  15. 15.

    Zhu Limin, Luo Honggen, Ding Han (2008) Optimal design of measurement point layout for workpiece localization. J Manuf Sci Eng 131(1)

  16. 16.

    Chen F, Brown GM, Song M (2000) Overview of three-dimensional shape measurement using optical methods. Opt Eng 39(1):10–22

  17. 17.

    Blais F (2004) Review of 20 years of range sensor development. J Electron Imaging 13(1)

  18. 18.

    Jarvis RA (1983) A perspective on range finding techniques for computer vision. IEEE Trans Pattern Anal Mach Intell 2:122–139

  19. 19.

    Besl PJ (1988) Active, optical range imaging sensors. Mach Vis Appl 1(2):127–152

  20. 20.

    Rocchini CMPPC, Cignoni P, Montani C, Pingi P, Scopigno R (2001) A low cost 3D scanner based on structured light. In: computer graphics forum, vol. 20, pp 299–308. Wiley Online Library

  21. 21.

    Forest J, Salvi J (2002) A review of laser scanning three-dimensional digitisers. In: IEEE/RSJ international conference on intelligent robots and systems, 2002, vol. 1, pp 73–78

  22. 22.

    Besl PJ, McKay ND (1992) Method for registration of 3-D shapes 1611:586–606

  23. 23.

    Biber P, Strasser W (2003) The normal distributions transform: a new approach to laser scan matching. In: 2003 IEEE/RSJ international conference on intelligent robots and systems, 2003. (IROS 2003). Proceedings, vol. 3, pp 2743–2748

  24. 24.

    Barone S, Paoli A, Razionale AV (2011) Three-dimensional point cloud alignment detecting fiducial markers by structured light stereo imaging. Mach Vis Appl 23(2):217–229

  25. 25.

    Gordon SJ, Seering WP (1988). IEEE Trans Pattern Anal Mach Intell 10(3):374–386

  26. 26.

    Habibi B, Pescaru S Method and apparatus for single camera 3D vision guided robotics, November 2004. U.S. Classification: 700/259; 318/568.11; 318/568.13; 318/573; 318/574; 318/577; 700/245; 700/247; 700/251; 700/252; 700/258; 700/260; 901/9; 901/14; 901/42; 901/45; 901/47 International Classification: G05B/1900

  27. 27.

    Biegelbauer G, Vincze M (2006) 3D Vision-Guided Bore Inspection System. In: IEEE international conference on computer vision systems, 2006 ICVS ’06, pp 22–22

  28. 28.

    Skotheim O, Lind M, Ystgaard P, Fjerdingen SA (2012) A flexible 3D object localization system for industrial part handling. In: 2012 IEEE/RSJ international conference on intelligent robots and systems (IROS), pp 3326–3333

  29. 29.

    Okarma K, Grudzinski M (2012) The 3D scanning system for the machine vision based positioning of workpieces on the CNC machine tools. In: 2012 17th international conference on methods and models in automation and robotics (MMAR), pp 85–90

  30. 30.

    Rajaraman M, Dawson-Haggerty M, Shimada K, Bourne D (2013) Automated workpiece localization for robotic welding. In: 2013 IEEE international conference on automation science and eEngineering (CASE), pp 681–686.00000

  31. 31.

    McCown J R, Firth JR (1984) Small log bucking system. U.S. Classification: 83/112; 83/75.5; 83/157; 83/363; 83/418; 83/471.1; 83/522.15 International Classification: B26D 706

  32. 32.

    Hards JE, Sweep-data-responsive high-speed continuous-log-travel bucking apparatus (1987). U.S. Classification: 83/75.5; 83/287; 83/289; 83/364; 83/365; 83/370; 144/379 International Classification: B27B 700

  33. 33.

    Starr D Method and apparatus for singulating, debarking, scanning and automatically..., April 2003. U.S. Classification: 144/340; 83/368; 83/371; 144/3.1; 144/208.1; 144/242.1; 144/357; 144/367; 144/382; 144/398 International Classification: B27L/100; B23Q/1500; B27M/108

  34. 34.

    Haas (2014) Haas VF-3 – Haas Automation®;,Inc. — CNC Machine Tools. http://www.haascnc.com/mt_spec1.asp?id=VF-3&webID=40_TAPER_STD_VMC#gsc.tab=0. Accessed 2014-7-1

  35. 35.

    Renishaw OMP40-2 compact touch probe, 2014b. http://www.renishaw.com/en/omp40-2-compact-touch-probe--7992. Accessed 2014-7-1

  36. 36.

    Renishaw OTS contact tool setting probe, 2014c. http://www.renishaw.com/en/ots-contact-tool-setting-probe--6783. Accessed 2014-7-1

  37. 37.

    Visual Computing Lab ISTI CNR MeshLab. http://meshlab.sourceforge.net. Accessed 2014-7-1

  38. 38.

    Cignoni P, Callieri M, Corsini M, Dellepiane M, Ganovelli F, Ranzuglia G (2008) Meshlab: an open-source mesh processing tool. In: Eurographics Italian Chapter Conference, pp 129–136. The Eurographics Association

  39. 39.

    Corsini M, Cignoni P, Scopigno R (2012) Efficient and flexible sampling with blue noise properties of triangular meshes. IEEE Trans Vis Comput Graph 18(6):914–924

  40. 40.

    NextEngine (2014) NextEngine 3D Laser Scanner. http://www.nextengine.com/. Accessed 2014-7-1

  41. 41.

    Rusu RB, Cousins S (2011) 3d is here: Point cloud library (pcl). In: 2011 IEEE international conference on robotics and automation (ICRA), pp 1–4. IEEE

  42. 42.

    Rusu RB, Blodow N, Beetz M (2009) Fast Point Feature Histograms (FPFH) for 3D registration. In: IEEE international conference on robotics and automation, 2009. ICRA ’09, pp 3212–3217

Download references

Author information

Correspondence to Harshad Srinivasan.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Srinivasan, H., Harrysson, O.L.A. & Wysk, R.A. Automatic part localization in a CNC machine coordinate system by means of 3D scans. Int J Adv Manuf Technol 81, 1127–1138 (2015). https://doi.org/10.1007/s00170-015-7178-z

Download citation

Keywords

  • 3D Scanning
  • Finish machining
  • Localization
  • Registration
  • Fiducial feature