Advertisement

Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Experimental evaluation of polycrystalline diamond (PCD) tool geometries at high feed rate in milling of titanium alloy TC11

Abstract

Titanium alloys are widely used in aerospace industrial components characterised by high material removal rate, of which the machining efficiency is a big issue. Targeting the problem, this paper presents the experimental findings of milling of titanium alloy TC11 using polycrystalline diamond (PCD) cutting tool at high feed rate. First, in order to verify the capability of PCD in finish milling of titanium alloys at high feed rate, the surface roughness R a is investigated under different PCD tool geometries (radial rake angle, axial rake angle and insert sharp radius), and the results indicate that its range is from 0.821 to 1.562 μm, which is suitable to titanium components. Also, the main tool failure patterns, cutting edge fracture and flank face wear, are observed and classified. Based on the tool failure patterns, the relationship between tool life and tool geometries is established. In order to explain the reasons of tool failures, the relationships between cutting forces and the tool geometries are made clear. Finally, the processes of flank face wear and rake face wear of PCD insert are proposed to show its wear evaluations.

This is a preview of subscription content, log in to check access.

References

  1. 1.

    Lutjering G, Williams J (2003) Titanium. Springer, Berlin

  2. 2.

    Godbole S (2013) The technological trendsetter. Trade magazine for efficient manufacturing, vol 9–10. Publish-Industry Verlag, Munich

  3. 3.

    Aspinwall DK, Dewes RC, Mantle AL (2005) The machining of γ-TiAI intermetallic alloys. CIRP Ann Manuf Technol 54(1):99–104. doi:10.1016/s0007-8506(07)60059-6

  4. 4.

    Bhaumik SK, Divakar C, Singh AK (1995) Machining Ti -6AI-4V alloy with a WBN-CBN composite tool. Mater Des 16(4):221–226

  5. 5.

    Che-Haron CH (2001) Tool life and surface integrity in turning titanium alloy. J Mater Process Technol 118:231–237

  6. 6.

    Pérez RGV (2005) Wear mechanisms of WC inserts in face milling of gamma titanium aluminides. Wear 259(7–12):1160–1167. doi:10.1016/j.wear.2005.02.062

  7. 7.

    Jaffery SHI, Mativenga PT (2011) Wear mechanisms analysis for turning Ti-6Al-4V—towards the development of suitable tool coatings. Int J Adv Manuf Technol 58(5–8):479–493. doi:10.1007/s00170-011-3427-y

  8. 8.

    Rao B, Dandekar CR, Shin YC (2011) An experimental and numerical study on the face milling of Ti–6Al–4V alloy: tool performance and surface integrity. J Mater Process Technol 211(2):294–304. doi:10.1016/j.jmatprotec.2010.10.002

  9. 9.

    Hou J, Zhou W, Duan H, Yang G, Xu H, Zhao N (2014) Influence of cutting speed on cutting force, flank temperature, and tool wear in end milling of Ti-6Al-4V alloy. Int J Adv Manuf Technol 70(9–12):1835–1845. doi:10.1007/s00170-013-5433-8

  10. 10.

    An QL, Fu YC, Xu JH (2011) Experimental study on turning of TC9 titanium alloy with cold water mist jet cooling. Int J Mach Tools Manuf 51(6):549–555. doi:10.1016/j.ijmachtools.2011.03.005

  11. 11.

    Li A, Zhao J, Wang D, Zhao J, Dong Y (2012) Failure mechanisms of a PCD tool in high-speed face milling of Ti–6Al–4V alloy. Int J Adv Manuf Technol 67(9–12):1959–1966. doi:10.1007/s00170-012-4622-1

  12. 12.

    Rotella G, Dillon OW, Umbrello D, Settineri L, Jawahir IS (2013) The effects of cooling conditions on surface integrity in machining of Ti6Al4V alloy. Int J Adv Manuf Technol 71(1–4):47–55. doi:10.1007/s00170-013-5477-9

  13. 13.

    Rotella G, Dillon OW Jr, Umbrello D, Settineri L, Jawahir IS (2014) The effects of cooling conditions on surface integrity in machining of Ti6Al4V alloy. Int J Adv Manuf Technol 71(1–4):47–55. doi:10.1007/s00170-013-5477-9

  14. 14.

    Nabhani F (2001) Machining of aerospace titanium alloys. Robot Comput Integr Manuf 17:99–106

  15. 15.

    Su H, Liu P, Fu Y, Xu J (2012) Tool life and surface integrity in high-speed milling of titanium alloy TA15 with PCD/PCBN tools. Chin J Aeronaut 25(5):784–790. doi:10.1016/s1000-9361(11)60445-7

  16. 16.

    Amin AKMN, Ismail AF, Nor Khairusshima MK (2007) Effectiveness of uncoated WC–Co and PCD inserts in end milling of titanium alloy—Ti–6Al–4V. J Mater Process Technol 192–193:147–158. doi:10.1016/j.jmatprotec.2007.04.095

  17. 17.

    Oosthuizen GA, Akdogan G, Treurnicht N (2010) The performance of PCD tools in high-speed milling of Ti6Al4V. Int J Adv Manuf Technol 52(9–12):929–935. doi:10.1007/s00170-010-2804-2

  18. 18.

    Corduan N, Himbart T, Poulachon G, Dessoly M, Lambertin M, Vigneau J, Payoux B (2003) Wear mechanisms of new tool materials for Ti-6AI-4V high performance machining. CIRP Ann Manuf Technol 52(1):73–76. doi:10.1016/s0007-8506(07)60534-4

  19. 19.

    Kuljanic E, Fioretti M, Beltrame L, Miani F (1998) Milling titanium compressor blades with PCD cutter. CIRP Ann Manuf Technol 47(1):61–64. doi:10.1016/s0007-8506(07)62785-1

  20. 20.

    Sutter G, List G (2013) Very high speed cutting of Ti–6Al–4V titanium alloy—change in morphology and mechanism of chip formation. Int J Mach Tools Manuf 66:37–43. doi:10.1016/j.ijmachtools.2012.11.004

  21. 21.

    Ren L (2009) Design and optimization of experiment. Science Press Ltd., Beijing

  22. 22.

    ISO (1989) Tool life testing in milling—part 1: face milling. ISO 8688–1:1989. International Organization for Standards, Geneva

  23. 23.

    ISO (1989) Tool life testing in milling—part 2: end milling. ISO 8688–2:1989. International Organization for Standards, Geneva

Download references

Author information

Correspondence to Xianli Liu.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ji, W., Liu, X., Wang, L. et al. Experimental evaluation of polycrystalline diamond (PCD) tool geometries at high feed rate in milling of titanium alloy TC11. Int J Adv Manuf Technol 77, 1549–1555 (2015). https://doi.org/10.1007/s00170-014-6517-9

Download citation

Keywords

  • High-feel milling
  • PCD
  • Tool geometries
  • Titanium alloy TC11