Design of a multifunctional cell for aerospace CFRP production

  • F. KrebsEmail author
  • L. Larsen
  • G. Braun
  • W. Dudenhausen


Owing to the rising demand in efficiency and sustainability in commercial aviation, aircraft manufacturers increase the usage of high-performance, lightweight materials like carbon-fibre-reinforced plastics (CFRPs). These materials pose new challenges to manufacturing processes concerning cost-effectiveness and quality requirements. To meet these challenges, the Institute of Structures and Design within the German Aerospace Center (DLR) designed a flexible robotic manufacturing cell at the Center for Lightweight Production Technology (ZLP) in Augsburg. The multifunctional cell (MFZ) can integrate processes for production and inspection on an industrial scale. Due to large workpieces like fuselage components or wing skins and low production quantities, workshop space and investment cost are major concerns for effective CFRP production. The large size of the cell (30 m × 15 m × 7 m) demands a highly reconfigurable space. The platform is composed of five ceiling-mounted robots on a gantry-like machine frame and may be divided in smaller independent cells. The multifunctional cell will improve the understanding of requirements of future production processes for lightweight components by providing a highly flexible platform on an industrial scale.


Robotics CFRP Flexible robotic manufacturing 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

170_2014_6022_MOESM1_ESM.mpg (33 mb)
ESM 1 (MPG 33748 kb)


  1. 1.
    Clean Sky Joint Undertaking (2012) Clean Sky at a glance: bringing sustainable air transport closer, BrusselsGoogle Scholar
  2. 2.
    European Commission (2011) Flightpath 2050—Europe’s vision for aviation: maintaining global leadership and serving society’s needs, LuxembourgGoogle Scholar
  3. 3.
    Campbell F (2004) Manufacturing processes for advanced composites. Elsevier, OxfordGoogle Scholar
  4. 4.
    Hartweg S, Heckmann A (2012) Modeling of flexible multibody systems excited by moving loads with application to a robotic portal system. In: Proc of the 2nd Joint International Conference on Multibody System Dynamics, Stuttgart, GermanyGoogle Scholar
  5. 5.
    Gerngross T, Krebs F, Buchheim A (2012) Automated production of large CFRP preforms: challenges and solutions along the process chain. In: Composite Manufacturing, Frankfurt, Germany.Google Scholar
  6. 6.
    Leica Geosystems (2010) PCMM System Specifications Leica Absolute Tracker and Leica T-Products, UnterentfeldenGoogle Scholar
  7. 7.
    Berchtold G (2007) Innovatives CFK-Fertigungsverfahren unter wirtschaftlichen Gesichtspunkten. DLR-Wissenschaftstag, BraunschweigGoogle Scholar
  8. 8.
    Larsen L, Dutta S (2011) Inline Qualitätssicherung in der CFK-Produktion mittels Laserscanner. In: Produktion 2020, Nördlingen, GermanyGoogle Scholar
  9. 9.
    Matthias B (2011) Sichere Mensch-Roboter-Kooperation in industriellen Anwendungen / Entwicklungsschritte bei ABB Corporate Research. In: Steuerung und Regelung von Robotern, Augsburg, GermanyGoogle Scholar

Copyright information

© Springer-Verlag London 2014

Authors and Affiliations

  1. 1.Center for Lightweight Production Technology, Institute of Structures and Design, German Aerospace Center (DLR)AugsburgGermany
  2. 2.Computer Supported Component Design, Institute of Structures and DesignGerman Aerospace Center (DLR)StuttgartGermany

Personalised recommendations