Advertisement

A study on the effect of rectangular cut out on laser forming of AISI 304 plates

  • K. ParamasivanEmail author
  • Sandip Das
  • Dipten Misra
ORIGINAL ARTICLE

Abstract

Laser bending of a rectangular AISI 304 plate with a rectangular cut out is investigated in the present work. In particular, effects of process parameters: laser power, scanning speed, and geometric parameters: dimensions of the cut out of sheet metal on temperature distribution and bending angle are explored with the help of numerical simulation. Analyses are carried out through a coupled thermo-mechanical formulation with finite element method using COMSOL MULTIPHYSICS. The temperature distribution and deformation of sheet metal have been obtained from numerical simulations. The bending angle is affected by process parameters, namely, laser power, scanning speed, and width of the cut out of the sheet metal. Position of the cut out vis-à-vis the scanning path and length of the cut out have very little effect on the bending angle.

Keywords

Laser forming Finite element analysis Rectangular cut out Bending angle 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Shen H, Vollertsen F (2009) Modelling of laser forming—an review. Comput Mater Sci 48:834–840CrossRefGoogle Scholar
  2. 2.
    Ji Z, Wu S (1998) FEM simulation of the temperature field during the laser forming of sheet metal. J Mater Process Technol 74:89–95CrossRefGoogle Scholar
  3. 3.
    Wu S, Ji Z (2002) FEM simulation of the deformation field during the laser forming of sheet metal. J Mater Process Technol 121:269–272CrossRefGoogle Scholar
  4. 4.
    Shi YJ, Shen H, Yao ZQ, Hu J (2006) Numerical investigation of straight-line laser forming under the temperature gradient mechanism. Acta Metall Sin (English Letters) 19(2):144–150CrossRefGoogle Scholar
  5. 5.
    Venkadeshwaran K, Das S, Misra D (2010) Finite element simulation of 3-D laser forming by discrete section circle line heating. Int J Eng Sci Technol 2(4):163–175CrossRefGoogle Scholar
  6. 6.
    Yu G, Masubuchi K, Maekawa T, Patrikalakis NM (2001) FEM simulation of laser forming of metal plates. J Manuf Sci Eng 123:405–410CrossRefGoogle Scholar
  7. 7.
    Zohoor M, Zahrani EG (2012) Experimental and numerical analysis of bending angle variation and longitudinal distortion in laser forming process. Scientia Iranica 19:1074–1080CrossRefGoogle Scholar
  8. 8.
    Hoseinpour Gollo M, Moslemi Naeini H, Mostafa Arab NB (2011) Experimental and numerical investigation on laser bending process. J Comput Appl Res Mech Eng 1(1):45–52Google Scholar
  9. 9.
    Pitz I, Otto A, Schmidt M (2010) Simulation of the laser beam forming process with moving meshes for large aluminium plates. Phys Procedia 5:363–369CrossRefGoogle Scholar
  10. 10.
    Che J, Sheikh M, Li L (2011) A study of the effect of laser beam geometries on laser bending of sheet metal by buckling mechanism. Opt Laser Technol 43:183–193CrossRefGoogle Scholar
  11. 11.
    Kyrsanidi AK, Kermanidis TB, Pantelakis SG (1999) Numerical and experimental investigation of the laser forming process. J Mater Process Technol 87:281–290CrossRefGoogle Scholar
  12. 12.
    Lambiase F (2012) An analytical model for evaluation of bending angle in laser forming of metal sheets. J Mater Eng Perform 21:2044–2052CrossRefGoogle Scholar
  13. 13.
    Hu Z, Labudovic M, Wang H, Kovacevic R (2001) Computer simulation and experimental investigation of sheet metal bending using laser beam scanning. Int J Mach Tools Manuf 41:589–607CrossRefGoogle Scholar
  14. 14.
    Hu Z, Kovacevic R, Labudovic M (2002) Experimental and numerical modeling of buckling instability of laser sheet forming. Int J Mach Tools Manuf 42:1427–1439CrossRefGoogle Scholar
  15. 15.
    Venkadeshwaran K, Das S, Misra D (2012) Bend angle prediction and parameter optimisation for laser bending of stainless steel using FEM and RSM. Int J Mechatron Manuf Syst 5(3–4):308Google Scholar
  16. 16.
    Shen H, Hu J, Yao Z (2010) Analysis and control of edge effects in laser bending. Opt Lasers Eng 48(3):305–315CrossRefGoogle Scholar
  17. 17.
    Wu D, Zhang Q, Ma G, Guo Y, Guo D (2010) Laser bending of brittle materials. Opt Lasers Eng 48(4):405–410CrossRefGoogle Scholar
  18. 18.
    Shi Y, Liu Y, Yi P, Hu J (2012) Effect of different heating methods on deformation of metal plate under upsetting mechanism in laser forming. Optics Laser Technol 44(2):486–491CrossRefGoogle Scholar
  19. 19.
    Shen H, Yao Z (2009) Study on mechanical properties after laser forming. Opt Lasers Eng 47(1):111–117CrossRefGoogle Scholar
  20. 20.
    Hoseinpour Gollo M, Mahdavian SM, Moslemi Naeini H (2011) Statistical analysis of parameter effects on bending angle in laser forming process by pulsed Nd:YAG laser. Optics Laser Technol 43(3):475–482CrossRefGoogle Scholar
  21. 21.
    Liu J, Sun S, Guan Y, Ji Z (2010) Experimental study on negative laser bending process of steel foils. Opt Lasers Eng 48(1):83–88CrossRefGoogle Scholar
  22. 22.
    Lambiase F, Ilio A (2013) A closed-form solution for thermal and deformation fields in laser bending process of different materials. Int J Adv Manuf Technol 69:849–861CrossRefGoogle Scholar
  23. 23.
    Sistaninia M, Sistaninia M, Moeanodini H (2009) Laser forming of plates using rotating and dithering beams. Comput Mater Sci 45(2):480–488CrossRefGoogle Scholar
  24. 24.
    Lambiase F, Ilio A, Paoletti A (2012) An experimental investigation on passive water cooling in laser forming process. Int J Adv Manuf Technol 64:829–840CrossRefGoogle Scholar
  25. 25.
    Maji K, Pratihar D, Nath AK (2013) Experimental investigations and statistical analysis of pulsed laser bending of AISI304 stainless steel sheet. Opt Laser Technol 49:18–27CrossRefGoogle Scholar

Copyright information

© Springer-Verlag London 2014

Authors and Affiliations

  1. 1.Jadavpur UniversityKolkataIndia

Personalised recommendations