Advertisement

Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Process parameter definition with respect to the behaviour of complex kinematic machine tools

  • 307 Accesses

  • 2 Citations

Abstract

The definition of machining processes with respect to complex kinematic machine tool behaviour involves the control of machine accuracy and kinematic performances. The aim is to propose process settings and tool paths which guarantee the required machining quality while maximizing productivity. This article presents an experimental protocol which enables the determination of machine tool structure behaviours which have an influence on machining quality. In parallel, an experimental analysis of the different kinds of settings which can improve machining quality is carried out. Two kinds of settings appear: the first class of settings improves machining quality or machining time, and the second class has an antagonistic influence on machining quality and machining time. Thus, the definition of the second class of settings arises from an optimisation between first-order defects, second-order defects and machining time. The developed method is illustrated on a parallel kinematic machine tool, the Tripteor X7. Note that this study is a first step towards controlling machine tool behaviour during machining.

This is a preview of subscription content, log in to check access.

References

  1. 1.

    Pateloup V, Duc E, Ray P (2004) Corner optimization for pocket machining. Int J Mach Tool Manuf 44:1343–1353

  2. 2.

    Pritschow G, Epppler C, Garber T (2002) Influence of the dynamic stiffness on the accuracy of PKM, 3rd Chemnitz Parallel Kinematic Seminar, pp. 313–333, Chemnitz, Germany

  3. 3.

    Geldart M, Webb P, Larsson H, Backstrom M, Gindy N, Rask K (2003) A direct comparison of the machining performance of a varix 5 axis parallel kinematic machining centre with conventional 3 and 5 axis machine tools. Int J Mach Tool Manuf 43:1107–1116

  4. 4.

    Terrier M, Dugas A, Hascoet JY (2004) Qualification of parallel kinematics machines in high-speed milling on free formed surfaces. Int J Mach Tool Manuf 44:865–877

  5. 5.

    Bonnemains T, Chanal H, Bouzgarrou BC, Ray P (2009) Stiffness computation and identification of parallel kinematic machine tools. J Manuf Sci Eng 131(4):041013

  6. 6.

    Pateloup S, Chanal H, Duc E (2012) Process definition of preformed part machining for taking benefit of Parallel Kinematic Machine-tools kinematic performances. In Int J Adv Manuf Technol 58:869–883

  7. 7.

    Neumann KE (2006) Exechon concept—parallel kinematic machines in research and practice (PKS'2006), Chemnitz, Germany, pp. 787–802

  8. 8.

    Bonnemains T (2009) Study of mechanical behaviour of parallel kinematic machine tool in high speed machining, PhD thesis, Université Blaise Pascal–Clermont II

  9. 9.

    Shin H, Kim S, Jeong J, Kim J (2012) Stiffness enhancement of a redundantly actuated parallel machine tool by dual support rims. Int J Precis Eng Manuf 13(9):1539–1547

  10. 10.

    Langeron JM, Duc E, Lartigue C, Bourdet P (2004) A new format for 5 axis tool path computation using Bspline curves. Comput Aided Des 36/12:1219–1229

  11. 11.

    Bearee R (2005) Prise en compte des phénomènes vibratoires dans la génération de commande des machines -outils à dynamique élevée, PhD Thesis in Automation, ENSAM Lille – ParisTech

  12. 12.

    Altintas Y, Brecher C, Weck M, Witt S (2005) Virtual machine tool. CIRP Ann Manuf Technol 54(2):115–138

  13. 13.

    Schwenke H, Schmitt R, Jatzkowski P, Warmann C (2009) On-the-fly calibration of linear and rotary axes of machine tools and CMMs using a tracking interferometer. CIRP Ann Manuf Technol 58(1):477–480

  14. 14.

    Lartigue C, Thiebaut F, Maekawa T (2001) CNC tool path in terms of B-spline curves. Comput Aided Des 33:307–319

  15. 15.

    Terrier M (2005) Optimisation du processus de fabrication en usinage à grande vitesse sur machines-outils à structure parallèle, PhD Thesis in mechanics, Ecole Centrale de Nantes

  16. 16.

    Olabi A, Bearee R, Gibaru O, Damak M (2010) Feedrate planning for machining with industrial six-axis robots. Control Eng Pract 18:471–482

  17. 17.

    Erkormaz K, Altintas Y (2001) High speed CNC system design. Part I: jerk limited trajectory gener quintic spline interpolation. Int J Mach Tools Manuf 41(9):1323–1345

  18. 18.

    Pritschow G (2000) Parallel Kinematic Machines (PKM)—limitations and new solutions. CIRP Ann Manuf Technol 49(1):275–280

  19. 19.

    Chanal H, Duc E, Ray P (2007) A new approach for the geometrical calibration of parallel kinematic machine tools based on the machining of a dedicated part. Int J Mach Tool Manuf 47:1151–1163

  20. 20.

    Susanu M, Dumur D (2006) Hierarchical predictive control within an open architecture machine tool. CIRP Ann Manuf Technol 55(1):389–392

  21. 21.

    Prevost D, Laverhne S, Lartigue C (2010) Feed drive simulation for the prediction of tool path follow up in high speed machining. J Mach Eng High Perform Manuf 8(4):32–42

  22. 22.

    Paris H, Peigne G, Mayer R (2004) Surface shape prediction in high speed machining. Int J Mach Tool Manuf 44:1567–1576

  23. 23.

    Seguy S, Insperger T, Arnaud L, Dessein G, Peigne G (2010) One the stability of high speed milling with spindle speed variation. Int J Adv Manuf Technol 48:883–895

  24. 24.

    Pessoles X, Landon Y, Segonds S, Rubio W (2013) Optimisation of workpiece setup for continuous five-axis milling: application to a five-axis BC type machining center. Int J Adv Manuf Tech 65(1–4):67–79. doi:10.1007/s00170-012-4151-y

  25. 25.

    Pateloup S (2011) Modélisation et aptitude à l’emploi des machines outils à structure parallèle : vers une optimisation dirigée du processus, PhD Thesis, Université Blaise Pascal–Clermont Ferrand

  26. 26.

    Sinumerik (2006) manuel de programmation, notion de base, 840D sl/840Di sl/840D/840Di/810D

  27. 27.

    Sinumerik (2006) manuel de programmation, notion complémentaire, 840D sl/840Di sl/840D/840Di/810D.

Download references

Author information

Correspondence to Hélène Chanal.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Pateloup, S., Chanal, H. & Duc, E. Process parameter definition with respect to the behaviour of complex kinematic machine tools. Int J Adv Manuf Technol 69, 1233–1248 (2013). https://doi.org/10.1007/s00170-013-5118-3

Download citation

Keywords

  • Parallel kinematic machine tool
  • Machining process
  • Experimental measurements
  • Mechanical behaviour