Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

A combined analytical hierarchical process (AHP) and Taguchi experimental design (TED) for plastic injection molding process settings

  • 605 Accesses

  • 13 Citations

Abstract

Injection molding process is without doubt a multi-objective process if processing time, productivity, effectiveness, and the multi-criteria quality of the product are taken into consideration. Process settings affect the degree by which these objectives are realized. This work suggests a new proposal for evaluating optimal process settings through the handling of the plastic injection molding process in the same approach as a traditional multi-objective multi-criteria process. In a sense, there are numerous objective functions including cooling time, volumetric shrinkage, warpage, sink marks, residual stresses, and various process settings including temperature, pressure, etc. Within the suggested proposal, the Taguchi experimental design is used to generate a balanced set of experiments to explore the process; then, the finite element software SIMPOE is used to evaluate the behavior of the injection molding at each experimental setting. Analytical hierarchical process is then employed for multiple comparisons of the objectives and experiments as such to give the overall objective weight for each process setting (experiment). Analysis of variance is then used to evaluate the significant factors and the optimal setting of the process. This technique proved effective to obtain compliance between process design and several common manufacturer preferences, although the considered part was not changed.

This is a preview of subscription content, log in to check access.

References

  1. 1.

    Tang SH, Kong YM, Sapuan SM, Samin R, Sulaiman S (2006) Design and thermal analysis of plastic injection mould. J Mater Process Technol 171:259–267. doi:10.1016/j.jmatprotec.2005.06.075

  2. 2.

    Kurt M, Kamber S, Kaynak Y, Atakok G, Girit O (2009) Experimental investigation of plastic injection molding: assessment of the effects of cavity pressure and mold temperature on the quality of the final products. Mater Des 30:3217–3224. doi:10.1016/j.matdes.2009.01.004

  3. 3.

    Hassan H, Regnier N, Defaye G (2009) A 3D study on the effect of gate location on the cooling of polymer by injection molding. Int J Heat Fluid FL 30:1218–1229. doi:10.1016/j.ijheatfluidflow.2009.06.005

  4. 4.

    Zhao P, Zhou H, Li Y, Li D (2010) Process parameters optimization of injection molding using a fast strip analysis as a surrogate model. Int J Adv Manuf Technol 49:949–959. doi:10.1007/s00170-009-2435-7

  5. 5.

    Dimla DE, Camilotto M, Miani F (2005) Design and optimisation of conformal cooling channels in injection moulding tools. J Mater Process Technol 164–165:1294–1300. doi:10.1016/j.jmatprotec.2005.02.162

  6. 6.

    Qiao HA (2006) Systematic computer-aided approach to cooling system optimal design in plastic injection molding. Int J Mech Sci 48:430–439. doi:10.1016/j.ijmecsci.2005.11.001

  7. 7.

    Chen C-P, Chuang M-T, Hsiao Y-H, Yang Y-K, Tsai C-H (2009) Simulation and experimental study in determining injection molding process parameters for thin-shell plastic parts via design of experiments analysis. Expert Syst Appl 36:10752–10759. doi:10.1016/j.eswa.2009.02.017

  8. 8.

    Park K, Ahn J (2004) Design of experiment considering two-way interactions and its application to injection molding processes with numerical analysis. J Mater Process Technol 146:221–227. doi:10.1016/j.jmatprotec.2003.10.020

  9. 9.

    Erzurumlu T, Ozcelik B (2006) Minimization of warpage and sink index in injection molded thermoplastic parts using Taguchi optimization method. Mater Des 27:853–861. doi:10.1016/j.matdes.2005.03.017

  10. 10.

    Aguilar-Lasserrea A, Bautistaa M, Ponsichb A, Huertaa M (2009) An AHP-based decision-making tool for the solution of multiproduct batch plant design problem under imprecise demand. Comp Oper Res 36:711–736. doi:10.1016/j.cor.2007.10.029

  11. 11.

    Gerdsri N, Kocaoglu D (2007) Applying the Analytic Hierarchy Process (AHP) to build a strategic framework for technology road mapping. Math Compt Model 46:1071–1080. doi:10.1016/j.mcm.2007.03.015

  12. 12.

    Thomas S, Vargas L (2001) Models, methods, concepts and applications of the analytic hierarchy process. Kluwer Academic Publisher, London

  13. 13.

    Tang SH, Tan YJ, Sapuan SM, Sulaiman S, Ismail N, Samin R (2007) The use of Taguchi method in the design of plastic injection mould for reducing warpage. J Mater Process Technol 182:418–426. doi:10.1016/j.jmatprotec.2006.08.025

  14. 14.

    Dolan J (2008) Shared decision-making—transferring research into practice: the Analytic Hierarchy Process (AHP). Patient Educ Couns 73:418–425. doi:10.1016/j.pec.2008.07.032

  15. 15.

    SIMPOE (2010) SIMPOE mesh version 3.0. http://www.simpoe.com/

  16. 16.

    Chun DH (1999) Cavity filling analyses of injection molding simulation: bubble and weld line formation. J Mater Process Technol 89-90:177–181. doi:10.1016/S0924-0136(99)00052-7

  17. 17.

    Spina R (2004) Injection moulding of automotive components: comparison between hot runner systems for a case study. J Mater Process Technol 155–156:1497–1504. doi:10.1016/j.matprotech.2004.04.359

  18. 18.

    Tang LQ, Chassapis C, Manoochehri S (1997) Optimal cooling system design for multi-cavity injection molding. Finite Elem Anal Des 26:229–251. doi:10.1016/S0168-874X(96)00083-2

  19. 19.

    SIMPOE (2011) SIMPOE mold 2011 R2.0. http://www.simpoe.com/solutions/27-simpoe-mold.html

  20. 20.

    Altan M (2010) Reducing shrinkage in injection moldings via the Taguchi, ANOVA and neural network methods. Mater Des 31:599–604. doi:10.1016/j.matdes.2009.06.049

  21. 21.

    Farshi B, Gheshmi S, Miandoabchi E (2010) Optimization of injection molding process parameters using sequential simplex algorithm. Mater Des 32:414–423. doi:10.1016/j.matdes.2010.06.043

  22. 22.

    Park H, Dang X (2010) Optimization of conformal cooling channels with array of baffles for plastic injection mold. Int J Precis Eng Man 11:879–890. doi:10.1007/s12541-010-0107-z

  23. 23.

    Wang TH, Young WB (2005) Study on residual stresses of thin-walled injection molding. Eur Polym J 41:2511–2517. doi:10.1016/j.eurpolymj.2005.04.019

  24. 24.

    Kamal M, Lai-Fook R, Hernandez-Aguilar J (2002) Residual thermal stresses in injection moldings of thermoplastics: a theoretical and experimental study. Polym Eng Sci 42:1098–1114. doi:10.1002/pen.11015

  25. 25.

    Mathivanan D, Parthasarathy NS (2009) Sink-mark minimization in injection molding through response surface regression modeling and genetic algorithm. Int J Adv Manu Technol 45:867–874. doi:10.1007/s00170-009-2021-z

Download references

Author information

Correspondence to Mahmoud Barghash.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

AlKaabneh, F.A., Barghash, M. & Mishael, I. A combined analytical hierarchical process (AHP) and Taguchi experimental design (TED) for plastic injection molding process settings. Int J Adv Manuf Technol 66, 679–694 (2013). https://doi.org/10.1007/s00170-012-4357-z

Download citation

Keywords

  • Analytical hierarchical process (AHP)
  • Analysis of variance (ANOVA)
  • Multi-objective injection molding design
  • Taguchi experimental design (TED)