Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

A new optimal design and analysis method based on MADM for MEMS products development

  • 365 Accesses


This paper presents an optimum design method to support the total micro-electromechanical systems (MEMS) product/device optimization, and its evaluation at the conceptual stage itself using the multiple attribute decision making method. In the traditional MEMS product development cycle, simulation and design using software tools are very important due to the knowledge limitation and complexity in design, fabrication, and packaging processes. The available tools are time consuming and relay on trial and error to achieve an optimum solution. The proposed method simplifies the relationship between parameters of design, fabrication, materials, packaging, and the performance of the MEMS product. The methodology is explained with the help of design flow diagram and time chart. A MEMS-based radio frequency (RF) power sensor is designed and the methodology is demonstrated. The proposed sensitivity analysis method is more effective and less time consuming than traditional techniques. Sensitivity analysis is carried out by varying the thickness of the signal conductor. The results of RF power sensor with insertion loss 0.428 dB, reflection loss 25.956 and voltage standing wave ratio of 1.106 at 1.5 GHz are reported.

This is a preview of subscription content, log in to check access.

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.


  1. 1.

    Lee S, Kim C, Jung S, Song I-S, Cho YC (2001) MEMS for IT applications. Proc Int Sym Micromech Human Sci. doi:10.1109/MHS.2001.965216

  2. 2.

    Mukherjee T (2003) MEMS design and verification. Proc Int Test Conf. doi:10.1109/TEST.2003.1270897

  3. 3.

    Fedder GK (1999) Structured design of integrated MEMS. Proceedings of the 12th IEEE International Conference on MEMS. doi:10.1109/MEMSYS.1999.746742

  4. 4.

    Saloman P (2000) Towards dedicated tools for microsystems. Int News Microsys MEMS 5:4–7

  5. 5.

    Estibals B, Fourniols J-Y, Noullet L, Martinez A (2001) MEMS design, realization and characterization in an educational context. Eng Sci Edu J. doi:10.1049/esej:20010508

  6. 6.

    Maseeh F, Harris RM, Senturia SD (1990) A CAD architecture for microelectromechanical systems. Proc IEEE Conf Micro Electro Mech Syst. doi:10.1109/MEMSYS.1990.110246

  7. 7.

    Da Silva MG, Giasolli R, Cunningham S, DeRoo D (2002) MEMS design for manufacturability (DFM). Sensors Expo & Conference. Accessed on 22 Oct 2011.

  8. 8.

    Mamiya H, Ishikawa K, Yu Q (2004) A new MEMS optimal design method using CASE. Inter Conf Thermal Thermomech Phen Elect Sys. doi:10.1109/ITHERM.2004.1318329

  9. 9.

    Senturia SD (1998) CAD challenges for microsensors, microactuators, and microsystems. Proc IEEE 86:1611–1626. doi:10.1109/5.704266

  10. 10.

    Fedder GK (2000) Top down design of MEMS. Technical Proceedings of the International Conference on Modeling and Simulation of Microsystems, Accessed on 22 Oct 2011.

  11. 11.

    Farnsworth M, Benkhelifa E, Tiwari A, Zhu M, Moniri M (2011) An efficient evolutionary multi-objective framework for MEMS design optimisation: validation, comparison and analysis. J Memetic Comput 3:175–197. doi:10.1007/s12293-011-0067-6

  12. 12.

    Ongkodjojo A, Tay FEH (2006) Techniques in global optimal design for MEMS & their applications. In Leondes CT (ed.) MEMS/NEMS handbook–techniques and applications. Springer. pp 151–172. doi:10.1007/0-387-25786-1_5

  13. 13.

    Brenner MP, Lang JH, Li J, Qiu J, Slocum A (2002) Optimum design of a MEMS relay switch. Nano Tech 1:214–217

  14. 14.

    Coultate JK, Fox CHJ, McWilliam S, Malvern AR (2008) Application of optimal and robust design methods to a MEMS accelerometer. Sensors Actuators A: Phys 142(1):88–96. doi:10.1016/j.sna.2007.04.033

  15. 15.

    Huang L, Wu GL, Zhu SZ, Huang Y, Pei M, Huang ZJ, Zhou N (2001) Exploring the optimal design of a new MEMS phase shifter using genetic algorithms. Gen Evol Comp Conf. doi:

  16. 16.

    Heo S, Kim YY (2007) Optimal design and fabrication of MEMS rotary thermal actuators. J Micromech Microeng 17:2241–2247. doi:10.1088/0960-1317/17/11/010

  17. 17.

    Prince AA, Agrawal VP (2009) Coding, evaluation, comparison, ranking, and optimum selection of microelectromechanical system (MEMS) products. Int J Mechatron Manufact Syst 2:97–119. doi:10.1504/IJMMS.2009.024350

  18. 18.

    Prince AA, Agrawal VP (2010) A group decision making aid for evaluation and optimum selection of microelectromechanical systems (MEMS) products. J Mechatron Intel Manufact 1(1/2):3–24

  19. 19.

    Mansour RR, Bakri-Kassem M, Daneshmand M, Messiha N (2003) RF MEMS devices. Proc Int Conf MEMS NANO Smart Sys. doi:10.1109/ICMENS.2003.1221974

  20. 20.

    Yan X (2010) Framework Model of MEMS design process management. Int J Int Manu Serv 2:340–353. doi:10.1504/IJIMS.2010.033942

  21. 21.

    Fernandez LJ, Visser E, Sese J, Wiegerink R, Jansen H, Flokstra J, Elwenspoek M (2004) Development of a capacitive MEMS RF power sensor without dissipative losses towards a new philosophy of RF power sensing. Proc Prec Electro Meas Digest. doi:10.1109/CPEM.2004.305488

  22. 22.

    Seppa H, Kyynarainen J, Oja A (2001) Microelectromechanical systems in electrical metrology. IEEE Trans Instrum Meas 50:440–444. doi:10.1109/19.918161

  23. 23.

    Fernandez LJ, Wiegerink RJ, Flokstra J, Sese J, Jansen HV, Elwenspoek M (2006) A capacitive RF power sensor based on MEMS technology. J Micromech Microeng 16:1099–1107. doi:10.1088/0960-1317/16/7/001

  24. 24.

    Crary SB (1995) Structured design methods for MEMS. Workshop Sponsored by National Science Foundation, Accessed on 22 Oct 2011.

Download references

Author information

Correspondence to A. Amalin Prince.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Prince, A.A., Jose, I. & Agrawal, V.P. A new optimal design and analysis method based on MADM for MEMS products development. Int J Adv Manuf Technol 63, 851–861 (2012).

Download citation


  • Microelectromechanical systems
  • MEMS
  • Design flow
  • MADM
  • Optimal design
  • Power sensor