Surface roughness optimization of cold-sprayed coatings using Taguchi method

  • Tarun Goyal
  • Ravinderjit Singh WaliaEmail author
  • T. S. Sidhu


In this paper, Taguchi L 18 orthogonal array have been employed for depositing the electro-conductive coatings by varying various process parameters, i.e., substrate material, type of powder feeding arrangement, stagnation gas temperature, stagnation gas pressure, and stand-off distance. The response parameter of the coatings so produced is measured in terms of surface roughness. The optimum process parameters are predicted on the basis of analyses (ANOVA) of the raw data and signal to noise ratio. The significant process parameters in order of their decreasing percentage contribution are: stagnation pressure, stand-off distance, substrate material, stagnation temperature of the carrier gas, and feed arrangement of the powder particles, respectively.


Low-pressure cold spray (LPCS) Coating Surface roughness Taguchi optimization Signal to noise ratio (S/N) 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Maev RGr, Leshchynsky V (2008) Introduction to low pressure gas dynamic spray. WILEY-VCH, WeinheimGoogle Scholar
  2. 2.
    Champagne VK (2007) The cold spray materials deposition process: fundamentals and applications. Wood head Publishing Limited, CambridgeCrossRefGoogle Scholar
  3. 3.
    Materials Deposition, Cold Spray- Department of Defense Manufacturing Process Standard; MIL-STD-3021, 4 August, 2008.Google Scholar
  4. 4.
    Ghelichi R, Guagliano M (2009) Coating by cold spray process: a state of the art. Frattura ed Integrità Strutturale 8:30–44. doi: 10.3221/IGF-ESIS.08.03 Google Scholar
  5. 5.
    Villafuerte J (2010) Current and future applications of Cold Spray Technology. 37–39 Accessed 18 December 2010
  6. 6.
    Lee J, Shin S, Kim HJ, Lee C (2007) Effects of gas temperature on critical velocity and deposition characteristics in kinetic spraying. Appl Surf Sci 253:3512–3520CrossRefGoogle Scholar
  7. 7.
    Li H, Shin H, Lee S, Ko K (2008) Effect of gas pressure on Al coating by cold gas dynamic spray. Mater Lett 62:1579–1581CrossRefGoogle Scholar
  8. 8.
    Ning XJ, Jang JH, Kim HJ (2007) Effects of powder properties on in-flight particle velocity and deposition process during low pressure cold spray process. Appl Surf Sci 253:7449–7455CrossRefGoogle Scholar
  9. 9.
    Li WY, Li CJ, Liao H (2010) Significant influence of particle surface oxidation on deposition efficiency, interface microstructure and adhesive strength of cold sprayed coatings. Appl Surf Sci 256:4953–4958CrossRefGoogle Scholar
  10. 10.
    Shin S, Xiong Y, Ji Y, Kim HJ, Lee C (2008) The influence of process parameters on deposition characteristics of soft/hard composite coating in kinetic spray process. Appl Surf Sci 254:2269–2275CrossRefGoogle Scholar
  11. 11.
    Steenkiste et al (1999) Kinetic spray coatings. Surf Coat Technol 111:62–71CrossRefGoogle Scholar
  12. 12.
    Li G, Wang XF, Li WY (2007) Effect of different incidence angles on bonding performance in cold spraying. Trans Nonferrous Met Soc China 17:116–121CrossRefGoogle Scholar
  13. 13.
    Li WY, Yin S, Wang XF (2010) Numerical investigations of the effect of oblique impact on particle deformation in cold spraying by SPH method. Appl Surf Sci 256:3725–3734CrossRefGoogle Scholar
  14. 14.
    Li WY, Zhang C, Guo XP, Zhang G, Liao HL, Li CJ, Coddet C (2008) Effect of stand-off distance on coating deposition characteristics in cold spraying. Mater Des 29:297–304zbMATHCrossRefGoogle Scholar
  15. 15.
    Pattison J, Celotto S, Khan A, O’Neill W (2008) Stand-off distance and bow shock phenomena in the cold spray process. Surf Coat Technol 202:1443–1454CrossRefGoogle Scholar
  16. 16.
    Grujicic M, Zhao CL, Tong C, DeRosset WS, Helfritch D (2004) Analysis of the impact velocity of powder particles in the cold-gas dynamic-spray process. Mater Sci Eng A 368:222–230CrossRefGoogle Scholar
  17. 17.
    Wu J, Fang H, Yoon S, Kim HJ, Lee Ch (2005) Measurement of particle velocity and characterization of deposition in aluminum alloy kinetic spraying process. Appl Surf Sci 252:1368–1377CrossRefGoogle Scholar
  18. 18.
    Helfritch D and Champagne V (2008) A model study of powder particle size effects in cold spray deposition. 26th Army Science Conference ProceedingsGoogle Scholar
  19. 19.
    Schmidt T, Gartner F, Assadi H, Kreye H (2006) Development of a generalized parameter window for cold spray deposition. Acta Mater 54:729–742CrossRefGoogle Scholar
  20. 20.
    Li WY, Liao H, Li CJ, Li G, Coddet C, Wang X (2006) On high velocity impact of micro sized metallic particles in cold spraying. Appl Surf Sci 253:2852–2862CrossRefGoogle Scholar
  21. 21.
    Klinkov SV, Kosarev VK, Rein M (2005) Cold spray deposition: significance of particle impact phenomenon. Aerosp Sci Technol 9:582–591CrossRefGoogle Scholar
  22. 22.
    Wu J, Fang H, Yoon S, Kim H, Lee C (2006) The rebound phenomenon in kinetic spraying deposition. Scr Mater 54:665–669CrossRefGoogle Scholar
  23. 23. Accessed 17 September 2009
  24. 24.
    Freslon (2003) Handbook of thermal spray technology-coatings equipment and theory. Thermal Spray Society and ASM International, USAGoogle Scholar
  25. 25.
    Steenkiste, Smith (2004) Evaluation of coatings produced via kinetic and cold spray process. J Therm Spray Technol 13:274–282CrossRefGoogle Scholar
  26. 26.
    Ross PJ (1988) Taguchi techniques for quality Engineering. McGraw-Hill Book Company, New YorkGoogle Scholar
  27. 27.
    Roy RK (1990) A primer on taguchi method. Van Nostrand Reinhold, New YorkzbMATHGoogle Scholar
  28. 28.
    Assadi H, Gartner F, Stoltenhoff T, Kreye H (2003) Bonding mechanism in cold gas spraying. Acta Materialia 51:4379–4394CrossRefGoogle Scholar

Copyright information

© Springer-Verlag London Limited 2011

Authors and Affiliations

  • Tarun Goyal
    • 1
  • Ravinderjit Singh Walia
    • 2
    Email author
  • T. S. Sidhu
    • 3
  1. 1.Punjab Technical UniversityJallandharIndia
  2. 2.PEC University of TechnologyChandigarhIndia
  3. 3.SBSCETFerozepurIndia

Personalised recommendations