Advertisement

Springer Nature is making Coronavirus research free. View research | View latest news | Sign up for updates

Machining fixture layout design using ant colony algorithm based continuous optimization method

Abstract

In any machining fixture, the workpiece elastic deformation caused during machining influences the dimensional and form errors of the workpiece. Placing each locator and clamp in an optimal place can minimize the elastic deformation of the workpiece, which in turn minimizes the dimensional and form errors of the workpiece. Design of fixture configuration (layout) is a procedure to establish the workpiece–fixture contact through optimal positioning of clamping and locating elements. In this paper, an ant colony algorithm (ACA) based discrete and continuous optimization methods are applied for optimizing the machining fixture layout so that the workpiece elastic deformation is minimized. The finite element method (FEM) is used for determining the dynamic response of the workpiece caused due to machining and clamping forces. The dynamic response of the workpiece is simulated for all ACA runs. This paper proves that the ACA-based continuous fixture layout optimization method exhibits the better results than that of ACA-based discrete fixture layout optimization method.

This is a preview of subscription content, log in to check access.

References

  1. 1.

    Bausch J, Youcef-Toumi K (1990) Kinematic methods for automated fixture reconfiguration planning IEEE International conference on robotics and automation 1396–140

  2. 2.

    Menassa RJ, Devries WA (1990) Design synthesis and optimization method for fixtures with compliant elements. In Proc ASME WAM Dallas TX PED 47:203–218

  3. 3.

    Mani M, Wilson WRD (1988) Automated design of work holding fixtures using kinematic constraint synthesis. Proceeding of the 16th North American Manufacturing Research Conference (NAMRC), 437–444.

  4. 4.

    Lee JD, Haynes LS (1987) Finite element analysis of flexible system. ASME J Eng Ind 109(2):134–139

  5. 5.

    Menassa RJ, Devries WR (1991) Optimization methods applied to selecting support positions in fixture design. ASME J Eng Ind 113:412–418

  6. 6.

    King LS, Hutter I (1993) Theoretical approach for generating optimal fixturing locations for prismatic work parts in automated assembly. J Manufact Syst 12(5):409–416

  7. 7.

    Kashyap R, DeVries WR (1999) Finite element analysis and optimization in fixture design. Struct Optim 18:193–201

  8. 8.

    Kang YZ, Rong YM, Yang JC (2003) Computer-aided fixture verification, Part 2—Tolerance analysis. Int J Adv Manuf Technol 21:836–884. doi:10.1007/s00170-002-1400-5

  9. 9.

    Demeter EC (1998) Fast support layout optimization. Int J Mach Tools Manuf 38(10):1221–1239. doi:10.1016/S0890-6955(97)00127-2

  10. 10.

    Li B, Melkote SN (2001) Fixture clamping force optimization and its impact on workpiece location accuracy. Int J Adv Manuf Technol 17(2):104–113. doi:10.1007/s001700170198

  11. 11.

    Sanchez HT, Estrems M, Faura F (2005) Fixturing analysis methods for calculating the contact load distribution and the valid clamping regions in machining processes. Int J Adv Manuf Technol 18(10):701–707 18

  12. 12.

    Kokkolaras Zhijun Li Michael, Izquierdo LE, Jack Hu S, Papalambros PY (2006) “Multiobjective optimization for integrated tolerance allocation and fixture layout design in multistation assembly, ASME 2006 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference September 10–13. Philadelphia, Pennsylvania, USA

  13. 13.

    Deng HY, Melkote SN (2006) Determination of minimum clamping forces for dynamically stable fixturing. Int J Mach Tools Manuf 46(7–8):847–857. doi:10.1016/j.ijmachtools.2005.07.040

  14. 14.

    Tan EYT, Kumar AS, Fuh JYH, Nee AYC (2004) Modeling, analysis and verification of optimal fixturing design. IEEE Trans Autom Sci Eng 1(2):121–132. doi:10.1109/TASE.2004.835601

  15. 15.

    Lai XM, Luo LJ, Lin ZQ (2004) Flexible assembly fixture layout modeling and optimization based on genetic algorithm. Chin J Mech Eng 1:89–92

  16. 16.

    Hamedi M (2005) Intelligent fixture design through a hybrid system of artificial neural network and genetic algorithm. Artif Intell Rev 23(3):295–311. doi:10.1007/s10462-004-7187-z

  17. 17.

    Krishnakumar K, Melkote SN (2000) Machining fixture layout optimization. Int J Mach Tools Manuf 40:579–598. doi:10.1016/S0890-6955(99)00072-3

  18. 18.

    Krishnakumar K, Satyanarayana S, Melkote SN (2002) Iterative fixture layout and clamping force optimization using the genetic algorithm. J Manuf Sci Eng 124(1):119–125. doi:10.1115/1.1414127

  19. 19.

    Qin GH et al (2006) Developed a mathematical approach to analysis and optimal design of a fixture locating scheme. Int J Adv Manuf Technol 29:349–359. doi:10.1007/s00170-005-2509-0

  20. 20.

    Prabhaharan G, Padmanaban KP, Asokan S (2006) Dynamic analysis on optimal placement of fixturing elements accounting for the effect of workpiece elasticity. Int J Manuf Sci Technol 8(1):33–51

  21. 21.

    Vallapuzha S, De Meter EC, Choudhuri S, Khetan RP (2002) An investigation into the use of spatial coordinates for the genetic algorithm based solution of the fixture layout optimization problem. Int J Mach Tool Manuf 42:265–275

  22. 22.

    Kaya N (2005) Machining fixture locating and clamping position optimization using genetic algorithms. Int J Comput Ind 57:112–120. doi:10.1016/j.compind.2005.05.001

  23. 23.

    Marcelin JL (2001) Genetic search applied to selecting support positions in machining of mechanical parts. Int J Adv Manuf Technol 17:344–347. doi:10.1007/s001700170169

  24. 24.

    Dorigo M, Gamberdella LM (1997) Ant Colony system: a cooperative learning approach to the traveling salesman problem. IEEE Trans Evol Comput 1(1):53–66. doi:10.1109/4235.585892

  25. 25.

    Patrick R, Mcmullan PR (2001) An Ant Colony Optimization approach to address a JIT sequencing problem with multiple objective. Artif Intell Eng 15:309–317. doi:10.1016/S0954-1810(01)00004-8

  26. 26.

    Jayaraman VK, Kulkarni BD, Karale S, Shalokar P (2000) Ant Colony framework for optimal design and scheduling of batch plants. Comput Chem Eng 24:1901–1910. doi:10.1016/S0098-1354(00)00592-5

  27. 27.

    Prabhaharan G, Muruganandam A, Asokan P, Girish BS (2005) Machine cell formation for cellular manufacturing systems using an ant colony system approach. Int J Adv Manuf Technol 25:1013–1019. doi:10.1007/s00170-003-1927-0

  28. 28.

    Prabhaharan G, Asokan P, Rajendran S (2005) Sensitivity-based conceptual design and tolerance allocation using the continuous ants colony algorithm (CACO). Int J Adv Manuf Technol 25:516–526. doi:10.1007/s00170-003-1846-0

  29. 29.

    Prabhaharan G, Padmanaban KP (2007) Machining fixture layout optimization using FEM and evolutionary techniques. Int J Adv Manuf Technol 32(11–12):1090–1103. doi:10.1007/s00170-006-0441-6

  30. 30.

    Padmanaban KP, Prabhaharan G (2008) Dynamic analysis on optimal placement of fixturing elements using evolutionary techniques. Int J Prod Res 46:4177–4214. doi:10.1080/00207540601147297

  31. 31.

    Rao PN (2000) Manufacturing and technology (Metal Cutting and Machine tools). McGraw Hill, New York

Download references

Author information

Correspondence to K. P. Padmanaban.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Padmanaban, K.P., Arulshri, K.P. & Prabhakaran, G. Machining fixture layout design using ant colony algorithm based continuous optimization method. Int J Adv Manuf Technol 45, 922–934 (2009). https://doi.org/10.1007/s00170-009-2035-6

Download citation

Keywords

  • Fixture layout
  • Modal analysis
  • ACA
  • Discrete and continuous optimization methods