Advertisement

Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Applications of integrated motion controllers for precise CNC machines

Abstract

The error resources of precise motion control systems are basically categorized into linear and nonlinear effects. To realize the precise motion of industrial computer numerical control (CNC) machines, this paper presents an integrated motion control structure with modular algorithms, including both the linear control and the nonlinear compensation. In the linear control design, this study applies three algorithms: (1) feedforward control to address the tracking errors, (2) cross-coupled control to reduce the contouring errors, and (3) digital disturbance observer to lessen the effects of modeling errors and disturbances in real applications. The results indicate that the linear motion controller achieves greatly improved accuracy in both tracking and contouring by reducing the servo lags and mismatched dynamics of the different axes. However, the adverse effect due to friction still exists and cannot be eliminated by applying the linear motion controller only. This study further integrates the nonlinear compensator and develops friction estimation and compensation rules for CNC machines. The digital signal processors are suitable to implement all the developed linear and nonlinear algorithms, and the present controllers have been successfully applied to industrial CNC machines. Experimental results on a vertical machining center indicate that, under different feed rates, the CNC machine with the integrated motion controller significantly reduces the maximum contouring error by 135% on average.

This is a preview of subscription content, log in to check access.

References

  1. 1.

    Koren Y, Lo CC (1991) Variable gain cross coupling controller for contouring. Ann CIRP 40:371–374. doi:10.1016/S0007-8506(07)62009-5

  2. 2.

    Clarke DW (1984) Self tuning control of non-minimum phase systems. Automatica 20:501–517. doi:10.1016/0005-1098(84)90003-7

  3. 3.

    Tomizuka M (1987) Zero phase error tracking algorithm for digital control. ASME J Dyn Syst Meas Contr 109:65–68

  4. 4.

    Hsu PL, Houng YC (1996) An integrated controller design for precise CNC motion control. Ann CIRP 25(1):91–96

  5. 5.

    Yeh SS, Hsu PL (2002) Estimation of the contouring error vector for the cross-coupled control design. IEEE/ASME Trans Mechatron 7(1):44–51. doi:10.1109/3516.990886

  6. 6.

    Shih YT, Chen CS, Lee AC (2002) A novel cross-coupling control design for Bi-axis motion. Int J Mach Tools Manuf 42(14):1539–1548. doi:10.1016/S0890-6955(02)00109-8

  7. 7.

    Chen SL, Liu HL, Ting SC (2002) Contouring control of biaxial systems based on polar coordinates. IEEE/ASME Trans Mechatron 7(3):329–345. doi:10.1109/TMECH.2002.802723

  8. 8.

    Lo CC (1998) Three-axis contouring control based on a trajectory coordinate basis. JSME Int J Ser C Mech Syst Mach Elem Manuf 41(2):242–247

  9. 9.

    Chiu GTC, Tomizuka M (2001) Contouring control of machine tool feed drive systems: a task coordinate frame approach. IEEE Trans Contr Syst Technol 9(1):130–139. doi:10.1109/87.896754

  10. 10.

    Yeh SS, Hsu PL (1999) Theory and applications of the robust cross-coupled control design. ASME Trans Dyn Syst Meas Contr 121(3):524–530. doi:10.1115/1.2802506

  11. 11.

    Chen CS, Fan YH, Tseng SP (2006) Position command shaping control in a retrofitted milling machine. Int J Mach Tools Manuf 46(3-4):293–303. doi:10.1016/j.ijmachtools.2005.05.018

  12. 12.

    Ohishi K, Nakao M, Ohnishi K, Miyachi K (1985) Microprocessor-controlled DC motor for load-insensitive position servo system. IEEE Trans Ind Electron IE 34(1):44–49. doi:10.1109/TIE.1987.350923

  13. 13.

    Umeno T, Hori Y (1991) Robust speed control of dc servomotors using modern two degree-of-freedom controller design. IEEE Trans Ind Electron 38(5):363–368. doi:10.1109/41.97556

  14. 14.

    Yeh SS, Hsu PL (2004) Perfectly matched feedback control and its integrated design for multi-axis motion systems. ASME J Dyn Syst Meas Contr 126(3):547–557. doi:10.1115/1.1789970

  15. 15.

    Yan MT, Huang KY, Shiu YJ, Chen Y (2007) Disturbance observer and adaptive controller design for a linear-motor-driven table system. Int J Adv Manuf Technol 35(3-4):408–415. doi:10.1007/s00170-007-1173-y

  16. 16.

    Mei X, Tsutsumi M, Tao T, Sun N (2004) Study on the compensation of error by stick-slip for high-precision table. Int J Mach Tools Manuf 44(5):503–510. doi:10.1016/j.ijmachtools.2003.10.027

  17. 17.

    Mei ZQ, Xue YC, Yang RQ (2006) Nonlinear friction compensation in mechatronic servo systems. Int J Adv Manuf Technol 30(7–8):693–699. doi:10.1007/s00170-005-0113-y

  18. 18.

    Johnson CT, Lorenz RD (1992) Experimental identification of friction and its compensation in precise, position controlled mechanisms. IEEE Trans Ind Appl 28(6):1392–1398. doi:10.1109/28.175293

  19. 19.

    Chen JS, Kuo YH, Hsu WY (2006) The influence of friction on contouring accuracy of a Cartesian guided tripod machine tool. Int J Adv Manuf Technol 30(5-6):470–478. doi:10.1007/s00170-005-0088-8

  20. 20.

    Armstrong-Helouvry B, Pierre D, Canudas DWC (1994) A survey of models, analysis tools and compensation methods for the control of machines with friction. Automatica 30(7):1083–1138. doi:10.1016/0005-1098(94)90209-7

Download references

Author information

Correspondence to Syh-Shiuh Yeh.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Yeh, S., Tsai, Z. & Hsu, P. Applications of integrated motion controllers for precise CNC machines. Int J Adv Manuf Technol 44, 906 (2009). https://doi.org/10.1007/s00170-008-1919-1

Download citation

Keywords

  • Motion control
  • Friction compensation
  • CNC machine