Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

A novel method of centrifugal processing for the synthesis of lead–bismuth eutectic alloy nanospheres and nanowires


In the present study, lead–bismuth (Pb–Bi) eutectic alloy nanospheres and nanowires were fabricated using a process based on centrifugal force. When various centrifugal forces were applied, nanospheres and nanowires were formed on/inside the highly ordered anodic aluminum oxide (AAO) templates. The X-ray diffraction spectrum showed that nanoscale wires were composed of Pb7Bi3 and Bi phases. The scanning electron microscopy (SEM) images proved the formation of nanospheres and nanowires on/inside the alumna channel templates. During centrifugation, the repulsive force between the nanochannel and the alloy melt was calculated from the surface tension on the ultra-fine tube. The force applied to the melt of Pb–Bi inside the AAO was controlled by the centrifugal force.

This is a preview of subscription content, log in to check access.



Anodic aluminum oxide

l :

Liquid length of injection

γ :

Surface tension of liquid

θ :

Contact angle between liquid and substrate

ΔP :

External pressure forcing the liquid into the channel

r :

Radius of channel

η :

Viscosity of liquid

ɛ :

Coefficient of slip

F :

Centrifugal force


Angular speed of the centrifuge

m :

Sample weight

R :

Rotation radius of the centrifuge


  1. 1.

    Rodriguez-Viejo J, Jensen KF, Mattoussi H, Michel J, Dabbousi BO, Bawendi MG (1997) Cathodoluminescence and photoluminescence of highly luminescent CdSe/ZnS quantum dot composites. Appl Phys Lett 70(16):2132–2134

  2. 2.

    Pfeiffer LN, Yacoby A, Stormer HL, Baldwin KL, Hasen J, Pinczuk A, Wegscheider W, West KW (1997) Transport and optics in quantum wires fabricated by MBE overgrowth on the (110) cleaved edge. Microelectron J 28(8–10):817–823

  3. 3.

    Hicks LD, Dresselhaus MS (1993) Effect of quantum-well structures on the thermoelectric figure of merit. Phys Rev B 47(19):12727–12731

  4. 4.

    Routkeritch D, Tager AA, Haruyama J, Almawlawi D, Moskovits M, Xu JM (1996) Nonlithographic nano-wire arrays: fabrication, physics, and device applications. IEEE Trans Electron Devices 43(10):1646–1658

  5. 5.

    Martín-González MS, Prieto AL, Gronsky R, Sands T, Stacy AM (2002) Insights into the electrodeposition of Bi2Te3. J Electrochem Soc 149(11):C546–C554

  6. 6.

    Ji C, Season PC (2002) Fabrication of nanoporous gold nanowires. Appl Phys Lett 81(23):4437–4439

  7. 7.

    Miao Z, Xu D, Ouyang J, Guo G, Zhao X, Tang Y (2002) Electrochemically induced sol-gel preparation of single-crystalline TiO2 nanowires. Nanolett 2(7):717–720

  8. 8.

    Cheng GS, Zhang LD, Chen SH, Li Y, Li L, Zhu XG, Zhu Y, Fei GT, Mao YQ (2000) Ordered nanostructure of single-crystalline GaN nanowires in a honeycomb structure of anodic alumina. J Mater Res 15(2):347–350

  9. 9.

    Liu ZQ, Pan ZW, Sun LF, Tang DS, Zhou WY, Wang G, Qian LX, Xie SS (2000) Synthesis of silicon nanowires using AuPd nanoparticles catalyst on silicon substrate. J Phys Chem Solids 61(7):1171–1174

  10. 10.

    Heremans J, Thrush CM, Lin Y-M, Cronin S, Zhang Z, Dresselhaus MS, Mansfield JF (2000) Bismuth nanowire arrays: synthesis and galvanomagnetic properties. Phys Rev B 61(4):2921–2930

  11. 11.

    Moroz A (1999) Three-dimensional complete photonic-band-gap structures in the visible. Phys Rev Lett 83(25):5274–5277

  12. 12.

    Wu YY, Yang PD (2000) Germanium nanowire growth via simple vapor transport. Chem Mater 12(3):605–607

  13. 13.

    Yao BD, Chan YF, Wang N (2002) Formation of ZnO nanostructures by a simple way of thermal evaporation. Appl Phys Lett 81(4):757–759

  14. 14.

    Lao JY, Wen JG, Ren ZF (2002) Hierarchical ZnO nanostructures. Nanolett 2(11):1287–1291

  15. 15.

    Banerjee D, Lao JY, Wang DZ, Huang JY, Ren ZF, Steeves D, Kimball B, Sennet M (2003) Large-quantity free-standing ZnO nanowires. Appl Phys Lett 83(10):2061–2063

  16. 16.

    Li HP, Sekhar JA (1993) Rapid solidification by unstable combustion synthesis. J Mater Res 8(10):2515–2523

  17. 17.

    Washburn EW (1921) The dynamics of capillary flow. Phys Rev 17(3):273–283

  18. 18.

    Alchagirov BB, Mozgovoy AG, Khokonov KB (2003) The surface tension of liquid near-eutectic alloys of lead–bismuth system. High Temp 41(6):755–762

  19. 19.

    Drenchev LB, Sobczak J, Malinov S, Sha W (2003) Numerical simulation of macrostructure formation in centrifugal casting of particle reinforced metal matrix composites. Part 2: simulations and practical applications. Model Simul Mater Sci Eng 11(4):651–674

  20. 20.

    Vergara VE, Salazar NV (1997) Centrifuged casting of a copper alloy using ceramic moulds. J Mater Proces Tech 63:765–769

  21. 21.

    Zhang J, Fan Z, Wang YQ, Zhou BL (2000) Hypereutectic aluminium alloy tubes with graded distribution of Mg2Si particles prepared by centrifugal casting. Mater Des 21(3):149–153

  22. 22.

    Watanabe K, Miyakawa O, Takada Y, Okuno O, Okabe T (2003) Casting behavior of titanium alloys in a centrifugal casting machine. Biomaterials 24(10):1737–1743

  23. 23.

    Nishida Y, Ohira G (1999) Modelling of infiltration of molten metal in fibrous preform by centrifugal force. Acta Mater 47(5):841–852

Download references


This work was supported by the National Science Council of the Republic of China under the research contract no. NSC92-2216-E009-019.

Author information

Correspondence to Chin-Guo Kuo.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Kuo, C., Chao, C. A novel method of centrifugal processing for the synthesis of lead–bismuth eutectic alloy nanospheres and nanowires. Int J Adv Manuf Technol 32, 468–472 (2007).

Download citation


  • Lead–bismuth eutectic
  • Nanosphere
  • Nanowire
  • Centrifugal force
  • Anodic aluminum oxide template
  • Ultra-fine tube