Advertisement

Triaxial accelerometer evaluation is correlated with IKDC grade of pivot shift

  • Lionel Helfer
  • Thais Dutra Vieira
  • Cesar Praz
  • Jean Marie Fayard
  • Mathieu Thaunat
  • Adnan Saithna
  • Bertrand Sonnery-CottetEmail author
KNEE
  • 2 Downloads

Abstract

Purpose

The purpose of this study was to evaluate the correlation between tibial acceleration parameters measured by the KiRA device and the clinical grade of pivot shift. The secondary objective was to report the risk factors for pre-operative high-grade pivot shift.

Methods

Two-hundred and ninety-five ACL deficient patients were examined under anesthesia. The pivot shift tests were performed twice by an expert surgeon. Clinical grading was performed using the International Knee Documentation Committee (IKDC) scale and tibial acceleration data was recorded using a triaxial accelerometer system (KiRA). The difference in the tibial acceleration range between injured and contralateral limbs was used in the analysis. Correlation coefficients were calculated using linear regression. Multivariate logistic regression was used to identify risk factors for high grade pivot shift.

Results

The clinical grade of pivot shift and the side-to-side difference in delta tibial acceleration determined by KiRA were significantly correlated (r = 0.57; 95% CI 0.513–0.658, p < 0.0001). The only risk factor identified to have a significant association with high grade pivot shift was an antero-posterior side to side laxity difference > 6 mm (OR = 2.070; 95% CI (1.259–3.405), p = 0.0042).

Conclusion

Side-to-side difference in tibial acceleration range, as measured by KiRA, is correlated with the IKDC pivot shift grade in anaesthetized patients. Side-to-side A–P laxity difference greater than 6 mm is reported as a newly defined risk factor for high grade pivot shift in the ACL injured knee.

Diagnostic study

Level II.

Keywords

Pivot shift grade Quantitative pivot shift Anterior cruciate ligament Antero-posterior laxity 

Notes

Funding

This study received no financial support or grant.

Compliance with ethical standards

Conflict of interest

One or more of the authors has declared the following potential conflict of interest or source of funding: B.S.-C. receives royalties from, is a paid consultant for, receives research support from, and has made presentations for Arthrex Inc. M.T. is a paid consultant for, receives research support from, and has made presentations for Arthrex. J-M.F. is a paid consultant, receives research support and has made presentations for Arthrex. A.S. is a paid consultant for Arthrex.

Ethical approval

Institutional review board approval (COS-RGDS-2018-07-002) was granted for this study. All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Informed consent

All patients gave valid written consent to participate.

References

  1. 1.
    Ahldén M, Araujo P, Hoshino Y, Samuelsson K, Middleton KK, Nagamune K, Karlsson J, Musahl V (2012) Clinical grading of the pivot shift test correlates best with tibial acceleration. Knee Surg Sports Traumatol Arthrosc 20:708–712CrossRefGoogle Scholar
  2. 2.
    Altman DG, Royston P (2006) The cost of dichotomising continuous variables. BMJ 332:1080CrossRefGoogle Scholar
  3. 3.
    Amis AA, Cuomo P, Rama RBS, Giron F, Bull AMJ, Thomas R, Aglietti P (2008) Measurement of knee laxity and pivot-shift kinematics with magnetic sensors. Oper Tech Orthop 18:196–203CrossRefGoogle Scholar
  4. 4.
    Bach BR, Warren RF, Wickiewicz TL (1988) The pivot shift phenomenon: results and description of a modified clinical test for anterior cruciate ligament insufficiency. Am J Sports Med 16:571–576CrossRefGoogle Scholar
  5. 5.
    Bedi A, Musahl V, Lane C, Citak M, Warren RF, Pearle AD (2010) Lateral compartment translation predicts the grade of pivot shift: a cadaveric and clinical analysis. Knee Surg Sports Traumatol Arthrosc 18:1269–1276CrossRefGoogle Scholar
  6. 6.
    Berruto M, Uboldi F, Gala L, Marelli B, Albisetti W (2013) Is triaxial accelerometer reliable in the evaluation and grading of knee pivot-shift phenomenon? Knee Surg Sports Traumatol Arthrosc 21:981–985CrossRefGoogle Scholar
  7. 7.
    Bignozzi S, Zaffagnini S, Lopomo N, Fu FH, Irrgang JJ, Marcacci M (2010) Clinical relevance of static and dynamic tests after anatomical double-bundle ACL reconstruction. Knee Surg Sports Traumatol Arthrosc 18:37–42CrossRefGoogle Scholar
  8. 8.
    Branch T, Stinton S, Sharma A, Lavoie F, Guier C, Neyret P (2017) The impact of bone morphology on the outcome of the pivot shift test: a cohort study. BMC Musculoskelet Disord 18:463CrossRefGoogle Scholar
  9. 9.
    Brandon ML, Haynes PT, Bonamo JR, Flynn MI, Barrett GR, Sherman MF (2006) The association between posterior and inferior tibial slope and anterior cruciate ligament insufficiency. Arthroscopy 22:894–899CrossRefGoogle Scholar
  10. 10.
    Bull AMJ, Earnshaw PH, Smith A, Katchburian MV, Hassan ANA, Amis AA (2002) Intraoperative measurement of knee kinematics in reconstruction of the anterior cruciate ligament. J Bone Joint Surg Br 84:1075–1081CrossRefGoogle Scholar
  11. 11.
    Colombet P, Robinson J, Christel P, Franceschi J-P, Djian P (2007) Using navigation to measure rotation kinematics during ACL reconstruction. Clin Orthop Relat Res 454:59–65CrossRefGoogle Scholar
  12. 12.
    Dejour D, Pungitore M, Valluy J, Nover L, Saffarini M, Demey G (2018) Preoperative laxity in ACL-deficient knees increases with posterior tibial slope and medial meniscal tears. Knee Surg Sports Traumatol Arthrosc 27:564–572CrossRefGoogle Scholar
  13. 13.
    van Eck CF, van den Bekerom MPJ, Fu FH, Poolman RW, Kerkhoffs GMMJ (2013) Methods to diagnose acute anterior cruciate ligament rupture: a meta-analysis of physical examinations with and without anaesthesia. Knee Surg Sports Traumatol Arthrosc 21:1895–1903CrossRefGoogle Scholar
  14. 14.
    Espregueira-Mendes J, Pereira H, Sevivas N, Passos C, Vasconcelos JC, Monteiro A, Oliveira JM, Reis RL (2012) Assessment of rotatory laxity in anterior cruciate ligament-deficient knees using magnetic resonance imaging with Porto-knee testing device. Knee Surg Sports Traumatol Arthrosc 20:671–678CrossRefGoogle Scholar
  15. 15.
    Feucht MJ, Salzmann GM, Bode G, Pestka JM, Kühle J, Südkamp NP, Niemeyer P (2015) Posterior root tears of the lateral meniscus. Knee Surg Sports Traumatol Arthrosc 23:119–125CrossRefGoogle Scholar
  16. 16.
    Galano GJ, Suero EM, Citak M, Wickiewicz T, Pearle AD (2012) Relationship of native tibial plateau anatomy with stability testing in the anterior cruciate ligament-deficient knee. Knee Surg Sports Traumatol Arthrosc 20:2220–2224CrossRefGoogle Scholar
  17. 17.
    Garth WP, Greco J, House MA (2000) The lateral notch sign associated with acute anterior cruciate ligament disruption. Am J Sports Med 28:68–73CrossRefGoogle Scholar
  18. 18.
    Grassi A, Signorelli C, Urrizola F, Raggi F, Macchiarola L, Bonanzinga T, Zaffagnini S (2018) Anatomical features of tibia and femur: influence on laxity in the anterior cruciate ligament deficient knee. Knee 25:577–587CrossRefGoogle Scholar
  19. 19.
    Hoshino Y, Kuroda R, Nagamune K, Araki D, Kubo S, Yamaguchi M, Kurosaka M (2012) Optimal measurement of clinical rotational test for evaluating anterior cruciate ligament insufficiency. Knee Surg Sports Traumatol Arthrosc 20:1323–1330CrossRefGoogle Scholar
  20. 20.
    Hoshino Y, Kuroda R, Nagamune K, Yagi M, Mizuno K, Yamaguchi M, Muratsu H, Yoshiya S, Kurosaka M (2007) In vivo measurement of the pivot-shift test in the anterior cruciate ligament-deficient knee using an electromagnetic device. Am J Sports Med 35:1098–1104CrossRefGoogle Scholar
  21. 21.
    Hoshino Y, Miyaji N, Nishida K, Nishizawa Y, Araki D, Kanzaki N, Kakutani K, Matsushita T, Kuroda R (2018) The concomitant lateral meniscus injury increased the pivot shift in the anterior cruciate ligament-injured knee. Knee Surg Sports Traumatol Arthrosc 27:646–651CrossRefGoogle Scholar
  22. 22.
    Huang W, Zhang Y, Yao Z, Ma L (2016) Clinical examination of anterior cruciate ligament rupture: a systematic review and meta-analysis. Acta Orthop Traumatol Turc 50:22–31CrossRefGoogle Scholar
  23. 23.
    Ishibashi Y, Tsuda E, Yamamoto Y, Tsukada H, Toh S (2009) Navigation evaluation of the pivot-shift phenomenon during double-bundle anterior cruciate ligament reconstruction: is the posterolateral bundle more important? Clin Orthop Relat Surg 25:488–495Google Scholar
  24. 24.
    Jakob RP, Stäubli HU, Deland JT (1987) Grading the pivot shift. Objective tests with implications for treatment. J Bone Joint Surg Br 69:294–299CrossRefGoogle Scholar
  25. 25.
    Jonsson H, Riklund-Ahlström K, Lind J (2004) Positive pivot shift after ACL reconstruction predicts later osteoarthrosis: 63 patients followed 5–9 years after surgery. Acta Orthop Scand 75:594–599CrossRefGoogle Scholar
  26. 26.
    Kaplan N, Wickiewicz TL, Warren RF (1990) Primary surgical treatment of anterior cruciate ligament ruptures. A long-term follow-up study. Am J Sports Med 18:354–358CrossRefGoogle Scholar
  27. 27.
    Kocher MS, Steadman JR, Briggs KK, Sterett WI, Hawkins RJ (2004) Relationships between objective assessment of ligament stability and subjective assessment of symptoms and function after anterior cruciate ligament reconstruction. Am J Sports Med 32:629–634CrossRefGoogle Scholar
  28. 28.
    Kujala UM, Nelimarkka O, Koskinen SK (1992) Relationship between the pivot shift and the configuration of the lateral tibial plateau. Arch Orthop Trauma Surg 111:228–229CrossRefGoogle Scholar
  29. 29.
    Kuroda R, Hoshino Y, Kubo S, Araki D, Oka S, Nagamune K, Kurosaka M (2012) Similarities and differences of diagnostic manual tests for anterior cruciate ligament insufficiency: a global survey and kinematics assessment. Am J Sports Med 40:91–99CrossRefGoogle Scholar
  30. 30.
    Kuroda R, Hoshino Y, Nagamune K, Kubo S, Nishimoto K, Araki D, Yamaguchi M, Yoshiya S, Kurosaka M (2008) Intraoperative measurement of pivot shift by electromagnetic sensors. Oper Tech Orthop 18:190–195CrossRefGoogle Scholar
  31. 31.
    Labbe D, Deguise J, Godbout V, Fernandes J, Hagemeister N (2008) Development of an objective measurement tool for the pivot shift phenomenon of the knee. J Biomech 41:S207CrossRefGoogle Scholar
  32. 32.
    Lane C, Warren R, Stanford F (2008) In vivo analysis of the pivot shift phenomenon during computer navigated ACL reconstruction. Knee Surg Sports Traumatol Arthrosc 16:487–492CrossRefGoogle Scholar
  33. 33.
    Logan MC, Williams A, Lavelle J, Gedroyc W, Freeman M (2004) What really happens during the Lachman test? A dynamic MRI analysis of tibiofemoral motion. Am J Sports Med 32:369–375CrossRefGoogle Scholar
  34. 34.
    Lopomo N, Signorelli C, Bonanzinga T, Marcheggiani Muccioli GM, Visani A, Zaffagnini S (2012) Quantitative assessment of pivot-shift using inertial sensors. Knee Surg Sports Traumatol Arthrosc 20:713–717CrossRefGoogle Scholar
  35. 35.
    Lopomo N, Signorelli C, Rahnemai-Azar AA, Raggi F, Hoshino Y, Samuelsson K, Musahl V, Karlsson J, Kuroda R, Zaffagnini S, PIVOT Study Group (2017) Analysis of the influence of anaesthesia on the clinical and quantitative assessment of the pivot shift: a multicenter international study. Knee Surg Sports Traumatol Arthrosc 25:3004–3011CrossRefGoogle Scholar
  36. 36.
    Magnussen RA, Reinke EK, Huston LJ, Hewett TE, Spindler KP, MOON Group (2016) Factors associated with high-grade Lachman, pivot shift, and anterior drawer at the time of anterior cruciate ligament reconstruction. Arthroscopy 32:1080–1085CrossRefGoogle Scholar
  37. 37.
    Monaco E, Ferretti A, Labianca L, Maestri B, Speranza A, Kelly MJ, D’Arrigo C (2012) Navigated knee kinematics after cutting of the ACL and its secondary restraint. Knee Surg Sports Traumatol Arthrosc 20:870–877CrossRefGoogle Scholar
  38. 38.
    Muccioli GMM, Signorelli C, Grassi A, di Sarsina TR, Raggi F, Carbone G, Macchiarola L, Vaccari V, Zaffagnini S (2018) In-vivo pivot-shift test measured with inertial sensors correlates with the IKDC grade. J ISAKOS Jt Disord Orthop Sports Med 3:89–93CrossRefGoogle Scholar
  39. 39.
    Muller B, Hofbauer M, Rahnemai-Azar AA, Wolf M, Araki D, Hoshino Y, Araujo P, Debski RE, Irrgang JJ, Fu FH, Musahl V (2016) Development of computer tablet software for clinical quantification of lateral knee compartment translation during the pivot shift test. Comput Methods Biomech Biomed Eng 19:217–228CrossRefGoogle Scholar
  40. 40.
    Musahl V, Ayeni OR, Citak M, Irrgang JJ, Pearle AD, Wickiewicz TL (2010) The influence of bony morphology on the magnitude of the pivot shift. Knee Surg Sports Traumatol Arthrosc 18:1232–1238CrossRefGoogle Scholar
  41. 41.
    Musahl V, Burnham J, Lian J, Popchak A, Svantesson E, Kuroda R, Zaffagnini S, Samuelsson K, PIVOT Study Group (2018) High-grade rotatory knee laxity may be predictable in ACL injuries. Knee Surg Sports Traumatol Arthrosc 26:3762–3769CrossRefGoogle Scholar
  42. 42.
    Musahl V, Citak M, O’Loughlin PF, Choi D, Bedi A, Pearle AD (2010) The effect of medial versus lateral meniscectomy on the stability of the anterior cruciate ligament-deficient knee. Am J Sports Med 38:1591–1597CrossRefGoogle Scholar
  43. 43.
    Musahl V, Kopf S, Rabuck S, Becker R, van der Merwe W, Zaffagnini S, Fu FH, Karlsson J (2012) Rotatory knee laxity tests and the pivot shift as tools for ACL treatment algorithm. Knee Surg Sports Traumatol Arthrosc 20:793–800CrossRefGoogle Scholar
  44. 44.
    Musahl V, Voos J, O’Loughlin PF, Stueber V, Kendoff D, Pearle AD (2010) Mechanized pivot shift test achieves greater accuracy than manual pivot shift test. Knee Surg Sports Traumatol Arthrosc 18:1208–1213CrossRefGoogle Scholar
  45. 45.
    Nagai K, Hoshino Y, Nishizawa Y, Araki D, Matsushita T, Matsumoto T, Takayama K, Nagamune K, Kurosaka M, Kuroda R (2015) Quantitative comparison of the pivot shift test results before and after anterior cruciate ligament reconstruction by using the three-dimensional electromagnetic measurement system. Knee Surg Sports Traumatol Arthrosc 23:2876–2881CrossRefGoogle Scholar
  46. 46.
    Noyes FR, Grood ES, Cummings JF, Wroble RR (1991) An analysis of the pivot shift phenomenon. The knee motions and subluxations induced by different examiners. Am J Sports Med 19:148–155CrossRefGoogle Scholar
  47. 47.
    Okazaki K, Miura H, Matsuda S, Yasunaga T, Nakashima H, Konishi K, Iwamoto Y, Hashizume M (2007) Assessment of anterolateral rotatory instability in the anterior cruciate ligament-deficient knee using an open magnetic resonance imaging system. Am J Sports Med 35:1091–1097CrossRefGoogle Scholar
  48. 48.
    Ouanezar H, Blakeney WG, Fernandes LR, Borade A, Latrobe C, Temponi EF, Sonnery-Cottet B (2018) Clinical outcomes of single anteromedial bundle biologic augmentation technique for anterior cruciate ligament reconstruction with consideration of tibial remnant size. Arthroscopy 34:714–722CrossRefGoogle Scholar
  49. 49.
    Pearle AD, Kendoff D, Musahl V, Warren RF (2009) The pivot-shift phenomenon during computer-assisted anterior cruciate ligament reconstruction. J Bone Joint Surg Am 91(Suppl 1):115–118CrossRefGoogle Scholar
  50. 50.
    Pfeiffer TR, Kanakamedala AC, Herbst E, Nagai K, Murphy C, Burnham JM, Popchak A, Debski RE, Musahl V (2018) Female sex is associated with greater rotatory knee laxity in collegiate athletes. Knee Surg Sports Traumatol Arthrosc 26:1319–1325CrossRefGoogle Scholar
  51. 51.
    Plaweski S, Grimaldi M, Courvoisier A, Wimsey S (2011) Intraoperative comparisons of knee kinematics of double-bundle versus single-bundle anterior cruciate ligament reconstruction. Knee Surg Sports Traumatol Arthrosc 19:1277–1286CrossRefGoogle Scholar
  52. 52.
    Rahnemai-Azar AA, Abebe ES, Johnson P, Labrum J, Fu FH, Irrgang JJ, Samuelsson K, Musahl V (2017) Increased lateral tibial slope predicts high-grade rotatory knee laxity pre-operatively in ACL reconstruction. Knee Surg Sports Traumatol Arthrosc 25:1170–1176CrossRefGoogle Scholar
  53. 53.
    Saita Y, Schoenhuber H, Thiébat G, Ravasio G, Pozzoni R, Panzeri A, Galli M, Nagao M, Takazawa Y, Ikeda H, Kaneko K (2018) Knee hyperextension and a small lateral condyle are associated with greater quantified antero-lateral rotatory instability in the patients with a complete anterior cruciate ligament (ACL) rupture. Knee Surg Sports Traumatol Arthrosc 27:868–874CrossRefGoogle Scholar
  54. 54.
    Song G, Zhang H, Wang Q, Zhang J, Li Y, Feng H (2016) Risk factors associated with grade 3 pivot shift after acute anterior cruciate ligament injuries. Am J Sports Med 44:362–369CrossRefGoogle Scholar
  55. 55.
    Song G-Y, Zhang H, Liu X, Zhang J, Xue Z, Qian Y, Feng H (2017) Complete posterolateral meniscal root tear is associated with high-grade pivot-shift phenomenon in noncontact anterior cruciate ligament injuries. Knee Surg Sports Traumatol Arthrosc 25:1030–1037CrossRefGoogle Scholar
  56. 56.
    Tanaka T, Hoshino Y, Miyaji N, Ibaragi K, Nishida K, Nishizawa Y, Araki D, Kanzaki N, Matsushita T, Kuroda R (2018) The diagnostic reliability of the quantitative pivot-shift evaluation using an electromagnetic measurement system for anterior cruciate ligament deficiency was superior to those of the accelerometer and iPad image analysis. Knee Surg Sports Traumatol Arthrosc 26:2835–2840CrossRefGoogle Scholar
  57. 57.
    Yamamoto Y, Ishibashi Y, Tsuda E, Tsukada H, Maeda S, Toh S (2010) Comparison between clinical grading and navigation data of knee laxity in ACL-deficient knees. Sports Med Arthrosc Rehabil Ther Technol SMARTT 2:27Google Scholar
  58. 58.
    Zaffagnini S, Lopomo N, Signorelli C, Marcheggiani Muccioli GM, Bonanzinga T, Grassi A, Visani A, Marcacci M (2013) Innovative technology for knee laxity evaluation: clinical applicability and reliability of inertial sensors for quantitative analysis of the pivot-shift test. Clin Sports Med 32:61–70CrossRefGoogle Scholar
  59. 59.
    Zaffagnini S, Signorelli C, Grassi A, Yue H, Raggi F, Urrizola F, Bonanzinga T, Marcacci M (2016) Assessment of the pivot shift using inertial sensors. Curr Rev Musculoskelet Med 9:160–163CrossRefGoogle Scholar

Copyright information

© European Society of Sports Traumatology, Knee Surgery, Arthroscopy (ESSKA) 2019

Authors and Affiliations

  • Lionel Helfer
    • 1
  • Thais Dutra Vieira
    • 1
  • Cesar Praz
    • 1
  • Jean Marie Fayard
    • 1
  • Mathieu Thaunat
    • 1
  • Adnan Saithna
    • 2
    • 3
  • Bertrand Sonnery-Cottet
    • 1
    Email author
  1. 1.Centre Orthopédique Santy, FIFA Medical Centre of Excellence, Groupe Ramsay-Générale de SantéHôpital Privé Jean MermozLyonFrance
  2. 2.Advanced Orthopaedics and Sports MedicineKansas CityUSA
  3. 3.School of Science & TechnologyNottingham Trent UniversityNottinghamUK

Personalised recommendations