Advertisement

Degenerative changes in cartilage likely occur in the medial compartment after anterior cruciate ligament reconstruction

  • Tetsuro Ushio
  • Ken OkazakiEmail author
  • Kanji Osaki
  • Yukihisa Takayama
  • Koji Sagiyama
  • Hideki Mizu-uchi
  • Satoshi Hamai
  • Yukio Akasaki
  • Hiroshi Honda
  • Yasuharu Nakashima
KNEE
  • 40 Downloads

Abstract

Purpose

Magnetic resonance imaging with T1ρ mapping is used to quantify the amount of glycosaminoglycan in articular cartilage, which reflects early degenerative changes. The purposes of this study were to evaluate early degenerative changes in knees after anterior cruciate ligament (ACL) reconstruction by comparing T1ρ values before and 2 years after surgery and investigate whether surgical factors and clinical outcomes are related to differences in T1ρ values.

Methods

Fifty patients who underwent unilateral primary ACL reconstruction were evaluated using T1ρ mapping before and 2 years after surgery. Three regions of interest (ROIs) were defined in the cartilage associated with the medial (M) and lateral (L) weight-bearing areas of the femoral condyle (FC) (anterior: MFC1 and LFC1, middle: MFC2 and LFC2, and posterior: MFC3 and LFC3). Two ROIs associated with the tibial plateau (T) were defined (anterior: MT1 and LT1, and posterior: MT2 and LT2). T1ρ values within the ROIs were measured before and 2 years after surgery and compared using the paired t test. Correlations between the difference in T1ρ values at these two time points and patient characteristics, presence of a cartilaginous lesion, graft type, and postoperative anteroposterior laxity were also evaluated using Pearson’s and Spearman’s correlation coefficients.

Results

There was a significant increase in T1ρ before versus 2 years after surgery in the MT1, MT2, LFC1, and LT1 areas, and a significant decrease in the LFC3 and LT2 areas. There was a significant correlation between postoperative anterior-posterior laxity and a postoperative increase in T1ρ values in the MFC3 (r = 0.37, P = 0.013) and MT2 (r = 0.35, P = 0.021) areas. Increases in T1ρ values in the MFC2 area were negatively correlated with KOOS symptoms (ρ = − 0.349, P = 0.027) and quality of life (ρ = − 0.374, P = 0.017) subscale scores.

Conclusion

Early degenerative changes in medial articular cartilage were observed with T1ρ mapping at 2 years after ACL reconstruction. Postoperative anterior-posterior laxity is correlated with an increase in T1ρ values in the posteromedial femur and tibia. An increase in T1ρ values in the central medial femoral condyle was associated with knee symptoms.

Level of evidence

III.

Keywords

Anterior cruciate ligament Degenerative changes Osteoarthritis T1ρ mapping Outcomes 

Abbreviations

ACL

: Anterior cruciate ligament

MRI

: Magnetic resonance imaging

ROI

: Region of interest

MFC

: Medial femoral condyle

LFC

: Lateral femoral condyle

MT

: Medial tibia

LT

: Lateral tibia

OA

: Osteoarthritis

dGEMRIC

: Delayed gadolinium-enhanced MRI of cartilage

BMI

: Body Mass Index

FTA

: Femorotibial angle

AP

: Anteroposterior

PTS

: Posterior tibial slope

ICRS

: International Cartilage Repair Society

BTB

: Bone-tendon-bone

WORMS

: Whole-Organ MRI Scoring

ALRI

: Anterolateral rotational instability

KOOS

: Knee Injury and Osteoarthritis Outcome Score

ADL

: Activity of daily living

QOL

: Quality of life

Notes

Acknowledgements

The authors thank Mr. Junji Kishimoto, a statistician from the Digital Medicine Initiative of Kyushu University, for his advice on the statistical analysis.

Author contributions

TU collected and analysed data and drafted the manuscript. KO conceived the study, contributed to its design, collected and analysed data, coordinated the study, and helped to draft the manuscript. KO is also the corresponding author. YT, KS, and HH collected and analysed data. HM, SH, and YA assisted in drafting the manuscript. YN gave final approval to the manuscript.

Funding

No financial support was provided to this study.

Compliance with ethical standards

Conflict of interest

KO has received speaker honoraria from Zimmer Biomet and Smith & Nephew. HM has received a speaker honorarium from Zimmer Biomet.

Ethical approval

Ethical approval was provided by the IRB of Kyushu University.

References

  1. 1.
    Hanypsiak B, Spindler K, Rothrock C, Calabrese G, Richmond B, Herrenbruck T, Parker R (2008) Twelve-year follow-up on anterior cruciate ligament reconstruction: long-term outcomes of prospectively studied osseous and articular injuries. Am J Sports Med 36:671–677CrossRefGoogle Scholar
  2. 2.
    Lohmander LS, Östenberg A, Englund M, Roos H (2004) High prevalence of knee osteoarthritis, pain, and functional limitations in female soccer players twelve years after anterior cruciate ligament injury. Arthritis Rheum 50:3145–3152CrossRefGoogle Scholar
  3. 3.
    Von Porat A, Roos EM, Roos H (2004) High prevalence of osteoarthritis 14 years after an anterior cruciate ligament tear in male soccer players: a study of radiographic and patient relevant outcomes. Ann Rheum Dis 63:269–273CrossRefGoogle Scholar
  4. 4.
    Spindler KP, Huston LJ, Chagin KM, Kattan MW, Reinke EK, Amendola A, Andrish JT, Brophy RH, Cox CL, Dunn WR, Flanigan DC, Jones MH, Kaeding CC, Magnussen RA, Marx RG, Matava MJ, McCarty EC, Parker RD, Pedroza AD, Vidal AF, Wolcott ML, Wolf BR, Wright RW (2018) Ten-year outcomes and risk factors after anterior cruciate ligament reconstruction: a MOON longitudinal prospective cohort study. Am J Sports Med 46:815–825CrossRefGoogle Scholar
  5. 5.
    Barenius B, Ponzer S, Shalabi A, Bujak R, Norlén L, Eriksson K (2014) Increased risk of osteoarthritis after anterior cruciate ligament reconstruction. Am J Sports Med 42:1049–1057CrossRefGoogle Scholar
  6. 6.
    Janssen RPA, du Mée AWF, van Valkenburg J, Sala HAGM, Tseng CM (2013) Anterior cruciate ligament reconstruction with 4-strand hamstring autograft and accelerated rehabilitation: A 10-year prospective study on clinical results, knee osteoarthritis and its predictors. Knee Surg Sports Traumatol Arthrosc 21:1977–1988Google Scholar
  7. 7.
    Li R, Lorenz S, Xu Y, Harner C, Fu F, Irrgang J (2011) Predictors of radiographic knee osteoarthritis after anterior cruciate ligament reconstruction. Am J Sports Med 39:2595–2603CrossRefGoogle Scholar
  8. 8.
    Risberg M, Oiestad B, Gunderson R (2016) Changes in knee osteoarthritis, symptoms, and function after anterior cruciate ligament reconstruction: a 20-year prospective follow-up study. Am J Sports Med 44:1215–1224CrossRefGoogle Scholar
  9. 9.
    Burstein D, Velyvis J, Scott KT, Stock KW, Kim YJ, Jaramillo D, Boutin RD, Gray ML (2001) Protocol issues for delayed Gd(DTPA)2–enhanced MRI (dGEMRIC) for clinical evaluation of articular cartilage. Magn Reson Med 45:36–41CrossRefGoogle Scholar
  10. 10.
    Nieminen MT, Rieppo J, Töyräs J, Hakumäki JM, Silvennoinen J, Hyttinen MM, Helminen HJ, Jurvelin JS (2001) T2 relaxation reveals spatial collagen architecture in articular cartilage: A comparative quantitative MRI and polarized light microscopic study. Magn Reson Med 46:487–493CrossRefGoogle Scholar
  11. 11.
    Wheaton AJ, Casey FL, Gougoutas AJ, Dodge GR, Borthakur A, Lonner JH, Schumacher HR, Reddy R (2004) Correlation of T1ρ with fixed charge density in cartilage. J Magn Reson Imaging 20:519–525CrossRefGoogle Scholar
  12. 12.
    Amano K, Li AK, Pedoia V, Koff MF, Krych AJ, Link TM, Potter H, Rodeo S, Li X, Ma CB, Majumdar S, Goldring SR, Goldring M, Hannafin JA, Marx RG, Nawabi DH, Otero M, Shah P, Warren RF, Amrami KK, Felmlee JP, Frick MA, Stuart MJ, Williams SL, Kretzchmar M, Lansdown DA, Okazaki N, Russell C, Savic D, Schwaiger B, Su F, Wyatt C, Cheong M, Hardin JA (2017) Effects of surgical factors on cartilage can be detected using quantitative magnetic resonance imaging after anterior cruciate ligament reconstruction. Am J Sports Med 45:1075–1084CrossRefGoogle Scholar
  13. 13.
    Hirose J, Nishioka H, Okamoto N, Oniki Y, Nakamura E, Yamashita Y, Usuku K, Mizuta H (2013) Articular cartilage lesions increase early cartilage degeneration in knees treated by anterior cruciate ligament reconstruction: T1 mapping evaluation and 1-year follow-up. Am J Sports Med 41:2353–2361CrossRefGoogle Scholar
  14. 14.
    Russell C, Pedoia V, Amano K, Potter H, Majumdar S, Koff MF, Goldring SR, Goldring M, Hannafin JA, Marx RG, Nawabi DH, Otero M, Rodeo SA, Shah P, Warren RF, Amrami KK, Felmlee JP, Frick MA, Krych AJ, Stuart MJ, Williams SL, Kretzchmar M, Lansdown DA, Li A, Li X, Link TM, Benjamin Ma C, Okazaki N, Savic D, Schwaiger B, Su F, Wyatt C, Hardin JA (2017) Baseline cartilage quality is associated with voxel-based T1ρ and T2 following ACL reconstruction: a multicenter pilot study. J Orthop Res 35:688–698CrossRefGoogle Scholar
  15. 15.
    Su F, Hilton JF, Nardo L, Wu S, Liang F, Link TM, Ma CB, Li X (2013) Cartilage morphology and T1ρ and T2 quantification in ACL-reconstructed knees: a 2-year follow-up. Osteoarthr Cartil 21:1058–1067CrossRefGoogle Scholar
  16. 16.
    Osaki K, Okazaki K, Takayama Y, Matsubara H, Kuwashima U, Murakami K, Doi T, Matsuo Y, Honda H, Iwamoto Y (2015) Characterization of biochemical cartilage change after anterior cruciate ligament injury using T1ρ mapping magnetic resonance imaging. Orthop J Sport Med 3:1–7Google Scholar
  17. 17.
    Brittberg M, Winalski C (2003) Evaluation of cartilage injuries and cartilage repair. J Bone Joint Surg Am 85:58–69CrossRefGoogle Scholar
  18. 18.
    Peterfy CG, Guermazi A, Zaim S, Tirman PFJ, Miaux Y, White D, Kothari M, Lu Y, Fye K, Zhao S, Genant HK (2004) Whole-organ magnetic resonance imaging score (WORMS) of the knee in osteoarthritis. Osteoarthr Cartil 12:177–190CrossRefGoogle Scholar
  19. 19.
    Okazaki K, Miura H, Matsuda S, Yasunaga T, Nakashima H, Konishi K, Iwamoto Y, Hashizume M (2007) Assessment of anterolateral rotatory instability in the anterior cruciate ligament-deficient knee using an open magnetic resonance imaging system. Am J Sports Med 35:1091–1097CrossRefGoogle Scholar
  20. 20.
    Okazaki K, Tashiro Y, Izawa T, Matsuda S, Iwamoto Y (2012) Rotatory laxity evaluation of the knee using modified Slocum’s test in open magnetic resonance imaging. Knee Surg Sports Traumatol Arthrosc 20:679–685CrossRefGoogle Scholar
  21. 21.
    Slocum DB, James SL, Larson RL, Singer KM (1976) Clinical test for anterolateral rotary instability of the knee. Clin Orthop Relat Res 118:63–69Google Scholar
  22. 22.
    Tegner Y, Lysholm J (1985) Rating systems in the evaluation of knee ligament injuries. Clin Orthop Relat Res 198:43–49Google Scholar
  23. 23.
    Roos EM, Roos HP, Lohmander LS, Ekdahl C, Beynnon BD (1998) Knee Injury and Osteoarthritis Outcome Score (KOOS)—development of a self-administered outcome measure. J Orthop Sports Phys Ther 28:88–96CrossRefGoogle Scholar
  24. 24.
    Theologis AA, Haughom B, Liang F, Zhang Y, Majumdar S, Link TM, Ma CB, Li X (2014) Comparison of T1rho relaxation times between ACL-reconstructed knees and contralateral uninjured knees. Knee Surg Sports Traumatol Arthrosc 22:298–307CrossRefGoogle Scholar
  25. 25.
    Thompson SM, Salmon LJ, Waller A, Linklater J, Roe JP, Pinczewski LA (2016) Twenty-year outcome of a longitudinal prospective evaluation of isolated endoscopic anterior cruciate ligament reconstruction with patellar tendon or hamstring autograft. Am J Sports Med 44:3083–3094CrossRefGoogle Scholar
  26. 26.
    Lansdown DA, Allen C, Zaid M, Wu S, Subburaj K, Souza R, Feeley BT, Li X, Ma CB (2015) A comprehensive in vivo kinematic, quantitative MRI and functional evaluation following ACL reconstruction—a comparison between mini-two incision and anteromedial portal femoral tunnel drilling. Knee 22:547–553CrossRefGoogle Scholar
  27. 27.
    Potter H, Jain S, Ma Y, Black B, Fung S, Lyman S (2012) Cartilage injury after acute, isolated anterior cruciate ligament tear: immediate and longitudinal effect with clinical/MRI follow-up. Am J Sports Med 40:276–285CrossRefGoogle Scholar
  28. 28.
    Silverwood V, Blagojevic-Bucknall M, Jinks C, Jordan JL, Protheroe J, Jordan KP (2015) Current evidence on risk factors for knee osteoarthritis in older adults: A systematic review and meta-analysis. Osteoarthr Cartil 23:507–515CrossRefGoogle Scholar
  29. 29.
    Fok AWM, Yau WP (2013) Delay in ACL reconstruction is associated with more severe and painful meniscal and chondral injuries. Knee Surg Sports Traumatol Arthrosc 21:928–933CrossRefGoogle Scholar
  30. 30.
    Magnussen R, Pedroza AD, Donaldson CT, Flanigan DC, Kaeding CC (2013) Time from ACL injury to reconstruction and the prevalence of additional intra-articular pathology: Is patient age an important factor? Knee Surg Sports Traumatol Arthrosc 21:2029–2034CrossRefGoogle Scholar
  31. 31.
    Nishioka H, Hirose J, Nakamura E, Okamoto N, Karasugi T, Taniwaki T, Okada T, Yamashita Y, Mizuta H (2013) Detecting ICRS grade 1 cartilage lesions in anterior cruciate ligament injury using T1ρ and T2 mapping. Eur J Radiol 82:1499–1505CrossRefGoogle Scholar
  32. 32.
    Li H, Chen S, Tao H, Chen S (2015) Quantitative MRI T2 relaxation time evaluation of knee cartilage: comparison of meniscus-intact and -injured knees after anterior cruciate ligament reconstruction. Am J Sports Med 43:865–872CrossRefGoogle Scholar
  33. 33.
    Lubowitz JH, Poehling GG (2011) Save the meniscus. Arthroscopy 27:301–302CrossRefGoogle Scholar
  34. 34.
    Noyes FR, Barber-Westin SD (2002) Arthroscopic repair of meniscal tears extending into the avascular zone in patients younger than twenty years of age. Am J Sports Med 30:589–600CrossRefGoogle Scholar
  35. 35.
    Seil R, Becker R (2016) Time for a paradigm change in meniscal repair: save the meniscus! Knee Surg Sports Traumatol Arthrosc 24:1421–1423CrossRefGoogle Scholar
  36. 36.
    Aga C, Risberg MA, Fagerland MW, Johansen S, Trøan I, Heir S, Engebretsen L (2018) No Difference in the KOOS Quality of Life Subscore Between Anatomic Double-Bundle and Anatomic Single-Bundle Anterior Cruciate Ligament Reconstruction of the Knee: A Prospective Randomized Controlled Trial With 2 Years’ Follow-up. Am J Sports Med 46:2341–2354CrossRefGoogle Scholar
  37. 37.
    Li X, Xu CP, Song JQ, Jiang N, Yu B (2013) Single-bundle versus double-bundle anterior cruciate ligament reconstruction: an up-to-date meta-analysis. Int Orthop 37:213–226CrossRefGoogle Scholar
  38. 38.
    Struewer J, Frangen TM, Ishaque B, Bliemel C, Efe T, Ruchholtz S, Ziring E (2012) Knee function and prevalence of osteoarthritis after isolated anterior cruciate ligament reconstruction using bone-patellar tendon-bone graft: long-term follow-up. Int Orthop 36:171–177CrossRefGoogle Scholar
  39. 39.
    MacKay JW, Low SBL, Smith TO, Toms AP, McCaskie AM, Gilbert FJ (2018) Systematic review and meta-analysis of the reliability and discriminative validity of cartilage compositional MRI in knee osteoarthritis. Osteoarthr Cartil 26:1140–1152CrossRefGoogle Scholar
  40. 40.
    Pedoia V, Su F, Amano K, Li Q, McCulloch CE, Souza RB, Link TM, Ma BC, Li X (2017) Analysis of the articular cartilage T1ρand T2relaxation times changes after ACL reconstruction in injured and contralateral knees and relationships with bone shape. J Orthop Res 35:707–717CrossRefGoogle Scholar

Copyright information

© European Society of Sports Traumatology, Knee Surgery, Arthroscopy (ESSKA) 2019

Authors and Affiliations

  • Tetsuro Ushio
    • 1
  • Ken Okazaki
    • 2
    Email author
  • Kanji Osaki
    • 1
  • Yukihisa Takayama
    • 3
  • Koji Sagiyama
    • 3
  • Hideki Mizu-uchi
    • 1
  • Satoshi Hamai
    • 1
  • Yukio Akasaki
    • 1
  • Hiroshi Honda
    • 3
  • Yasuharu Nakashima
    • 1
  1. 1.Department of Orthopaedic Surgery, Graduate School of Medical SciencesKyushu UniversityFukuokaJapan
  2. 2.Department of Orthopaedic SurgeryTokyo Women’s Medical UniversityTokyoJapan
  3. 3.Department of Clinical Radiology, Graduate School of Medical SciencesKyushu UniversityFukuokaJapan

Personalised recommendations