Arthroscopic matrix-associated, injectable autologous chondrocyte transplantation of the hip: significant improvement in patient-related outcome and good transplant quality in MRI assessment

  • Henriette Bretschneider
  • Siegfried Trattnig
  • Stefan Landgraeber
  • Albrecht Hartmann
  • Klaus-Peter GüntherEmail author
  • Michael Dienst
  • Jörg Schröder
  • Stefan Fickert



Acetabular chondral lesions are common in patients with FAI. For large full-thickness cartilage defects, arthroscopic matrix-associated autologous chondrocyte transplantation (MACT) using an injectable in situ crosslinking product is an option. Aim of the study was to evaluate clinical and MRI results 12 months after MACT of acetabular cartilage defects in FAI patients.


We report data on 21 patients with a focal cartilage defect of the hip [2.97 ± 1.44 cm2 (mean ± SD)] caused by FAI treated with an arthroscopically conducted MACT combined with FAI surgery. The results were assessed with patient-reported outcome measures (iHOT33, EQ-5D) pre- as well as post-operatively and by MRI using MOCART scoring system 6 and 12 months post-operatively.


The iHOT33 score improved from 52.9 ± 21.14 (mean ± SD) pre-operative to 81.08 ± 22.04 (mean ± SD; p = 0.0012) 12 months post-operatively. The lower the pre-operative iHOT33 score and the larger the defect size, the greater the observed improvement compared to pre-operative scores at 12 months. Patients showed a significant improvement in EQ-5D-5L index value (p = 0.0015) and EQ-5D VAS (p = 0.0006). MRI analysis after 12 months revealed a complete integration of the transplant in 16 of 20 patients.


Injectable MACT is a promising minimally invasive treatment option for full-thickness cartilage defects of the hip caused by FAI. A significant improvement in symptoms and function associated with an increase in quality of life was detected in patients treated with injectable MACT combined with FAI surgery. This is of considerable clinical relevance, since, in addition to the elimination of the mechanical cause, MACT allows the successful therapy of consequential cartilage damage.

Level of evidence

Level 4, case series.


Hip arthroscopy Matrix-associated autologous chondrocyte transplantation MACT Cartilage defect 



This study was funded by TETEC Tissue Engineering Technologies AG, Reutlingen, Germany.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

The study was approved according to the local institutional review board (#EK 48022014) and has been registered by (NCT02179346).


  1. 1.
    Anderson LA, Peters CL, Park BB, Stoddard GJ, Erickson JA, Crim JR (2009) Acetabular cartilage delamination in femoroacetabular impingement. Risk factors and magnetic resonance imaging diagnosis. J Bone Jt Surg Am 91:305–313CrossRefGoogle Scholar
  2. 2.
    Benz K, Freudigmann C, Müller J, Wurst H, Albrecht D, Badke A, Gaissmaier C, Mollenhauer J (2010) a polyethylene glycol-crosslinked serum albumin/hyaluronan hydrogel for the cultivation of chondrogenic cell types. Adv Eng Mater 12:B539–B551CrossRefGoogle Scholar
  3. 3.
    Bretschneider H, Stiehler M, Hartmann A, Boger E, Osswald C, Mollenhauer J, Gaissmaier C, Günther K-P (2016) Characterization of primary chondrocytes harvested from hips with femoroacetabular impingement. Osteoarthr Cartil 24:1622–1628CrossRefGoogle Scholar
  4. 4.
    Brittberg M, Winalski CS (2003) Evaluation of cartilage injuries and repair. J Bone Jt Surg Am 85-A (Suppl 2):58–69CrossRefGoogle Scholar
  5. 5.
    Degen RM, Pan TJ, Chang B, Mehta N, Chamberlin PD, Ranawat AS, Nawabi DH, Kelly BT, Lyman S (2017) Risk of failure of primary hip arthroscopy-a population-based study. J Hip Preserv Surg 4:214–223CrossRefGoogle Scholar
  6. 6.
    EuroQol Group (1990) EuroQol–a new facility for the measurement of health-related quality of life. Health Policy Amst Neth 16:199–208CrossRefGoogle Scholar
  7. 7.
    Fickert S, Aurich M, Albrecht D, Angele P, Büchler L, Dienst M, Erggelet C, Fritz J, Gebhart C, Gollwitzer H, Kindler M, Lampert C, Madry H, Möckel G, Niemeyer P, Schröder J, Sobau C, Spahn G, Zinser W, Landgraeber S (2017) Biologische Rekonstruktion lokalisiert vollschichtiger Knorpelschäden des Hüftgelenks: Empfehlungen der Arbeitsgemeinschaft “Klinische Geweberegeneration” der DGOU und des Hüftkomitees der AGA. Z Für Orthop Unfallchirurgie 155:670–682CrossRefGoogle Scholar
  8. 8.
    Fickert S, Schattenberg T, Niks M, Weiss C, Thier S (2014) Feasibility of arthroscopic 3-dimensional, purely autologous chondrocyte transplantation for chondral defects of the hip: a case series. Arch Orthop Trauma Surg 134:971–978CrossRefGoogle Scholar
  9. 9.
    Fontana A, Bistolfi A, Crova M, Rosso F, Massazza G (2012) Arthroscopic treatment of hip chondral defects: autologous chondrocyte transplantation versus simple debridement—a pilot study. Arthroscopy 28:322–329CrossRefGoogle Scholar
  10. 10.
    Ganz R, Leunig M, Leunig-Ganz K, Harris WH (2008) The etiology of osteoarthritis of the hip: an integrated mechanical concept. Clin Orthop Relat Res 466:264–272CrossRefGoogle Scholar
  11. 11.
    Ganz R, Parvizi J, Beck M, Leunig M, Nötzli H, Siebenrock KA (2003) Femoroacetabular impingement: a cause for osteoarthritis of the hip. Clin Orthop Relat Res 417:112–120Google Scholar
  12. 12.
    Jannelli E, Fontana A (2017) Arthroscopic treatment of chondral defects in the hip: AMIC, MACI, microfragmented adipose tissue transplantation (MATT) and other options. SICOT-J 3:43CrossRefGoogle Scholar
  13. 13.
    Jordan MA, Van Thiel GS, Chahal J, Nho SJ (2012) Operative treatment of chondral defects in the hip joint: a systematic review. Curr Rev Musculoskelet Med 5:244–253CrossRefGoogle Scholar
  14. 14.
    Körsmeier K, Claßen T, Kamminga M, Rekowski J, Jäger M, Landgraeber S (2016) Arthroscopic three-dimensional autologous chondrocyte transplantation using spheroids for the treatment of full-thickness cartilage defects of the hip joint. Knee Surg Sports Traumatol Arthrosc 24:2032–2037CrossRefGoogle Scholar
  15. 15.
    Krueger DR, Karczewski D, Ballhausen M, Geßlein M, Schütz M, Perka C, Schroeder JH (2017) Is a minimal invasive autologous chondrocyte implantation (ACI) in the hip possible? A feasibility and safety study of arthroscopic treatment of full thickness acetabular cartilage defects with an injectable ACI. Sci Pages Orthop Surg 1(1):1–6Google Scholar
  16. 16.
    Lazik A, Körsmeier K, Claßen T, Jäger M, Kamminga M, Kraff O, Lauenstein TC, Theysohn JM, Landgraeber S (2015) 3 T high-resolution and delayed gadolinium enhanced MR imaging of cartilage (dGEMRIC) after autologous chondrocyte transplantation in the hip. J Magn Reson Imaging JMRI 42:624–633CrossRefGoogle Scholar
  17. 17.
    Malviya A, Raza A, Jameson S, James P, Reed MR, Partington PF (2015) Complications and survival analyses of hip arthroscopies performed in the national health service in England: a review of 6,395 cases. Arthrosc J Arthrosc Relat Surg Off Publ Arthrosc Assoc N Am Int Arthrosc Assoc 31:836–842CrossRefGoogle Scholar
  18. 18.
    Marlovits S, Singer P, Zeller P, Mandl I, Haller J, Trattnig S (2006) Magnetic resonance observation of cartilage repair tissue (MOCART) for the evaluation of autologous chondrocyte transplantation: determination of interobserver variability and correlation to clinical outcome after 2 years. Eur J Radiol 57:16–23CrossRefGoogle Scholar
  19. 19.
    Meyer DC, Beck M, Ellis T, Ganz R, Leunig M (2006) Comparison of six radiographic projections to assess femoral head/neck asphericity. Clin Orthop Relat Res 445:181–185Google Scholar
  20. 20.
    Mohtadi NGH, Griffin DR, Pedersen ME, Chan D, Safran MR, Parsons N, Sekiya JK, Kelly BT, Werle JR, Leunig M, McCarthy JC, Martin HD, Byrd JWT, Philippon MJ, Martin RL, Guanche CA, Clohisy JC, Sampson TG, Kocher MS, Larson CM, Multicenter Arthroscopy of the Hip Outcomes Research Network (2012) The Development and validation of a self-administered quality-of-life outcome measure for young, active patients with symptomatic hip disease: the International Hip Outcome Tool (iHOT-33). Arthroscopy 28:595–605 (quiz 606–610.e1)CrossRefGoogle Scholar
  21. 21.
    Nakano N, Lisenda L, Jones TL, Loveday DT, Khanduja V (2017) Complications following arthroscopic surgery of the hip: a systematic review of 36 761 cases. Bone Jt J 99-B:1577–1583CrossRefGoogle Scholar
  22. 22.
    Scholz B, Kinzelmann C, Benz K, Mollenhauer J, Wurst H, Schlosshauer B (2010) Suppression of adverse angiogenesis in an albumin-based hydrogel for articular cartilage and intervertebral disc regeneration. Eur Cell Mater 20:24–36 (discussion 36–37)CrossRefGoogle Scholar
  23. 23.
    Schroeder JH, Hufeland M, Schütz M, Haas NP, Perka C, Krueger DR (2016) Injectable autologous chondrocyte transplantation for full thickness acetabular cartilage defects: early clinical results. Arch Orthop Trauma Surg 136:1445–1451CrossRefGoogle Scholar
  24. 24.
    Thier S, Baumann F, Weiss C, Fickert S (2018) Feasibility of arthroscopic autologous chondrocyte implantation in the hip using an injectable hydrogel. Hip Int 28(4):442–449. CrossRefGoogle Scholar
  25. 25.
    Thier S, Weiss C, Fickert S (2017) Arthroscopic autologous chondrocyte implantation in the hip for the treatment of full-thickness cartilage defects - A case series of 29 patients and review of the literature. SICOT-J 3:72CrossRefGoogle Scholar
  26. 26.
    Trattnig S, Ba-Ssalamah A, Pinker K, Plank C, Vecsei V, Marlovits S (2005) Matrix-based autologous chondrocyte implantation for cartilage repair: noninvasive monitoring by high-resolution magnetic resonance imaging. Magn Reson Imaging 23:779–787CrossRefGoogle Scholar

Copyright information

© European Society of Sports Traumatology, Knee Surgery, Arthroscopy (ESSKA) 2019

Authors and Affiliations

  • Henriette Bretschneider
    • 1
  • Siegfried Trattnig
    • 2
    • 3
  • Stefan Landgraeber
    • 4
  • Albrecht Hartmann
    • 1
  • Klaus-Peter Günther
    • 1
    Email author
  • Michael Dienst
    • 5
  • Jörg Schröder
    • 6
  • Stefan Fickert
    • 7
    • 8
  1. 1.University Centre for Orthopaedics and Trauma Surgery, University Hospital Carl Gustav Carus at Technische Universität DresdenDresdenGermany
  2. 2.Department of Biomedical Imaging and Image Guided Therapy, High Field MR CenterMedical University of ViennaViennaAustria
  3. 3.Christian Doppler Laboratory for Clinical Molecular MR ImagingViennaAustria
  4. 4.Department of Orthopaedics and Trauma SurgeryUniversity of Duisburg-EssenEssenGermany
  5. 5.Orthopedic Surgery München, OCM Clinic GmbHMunichGermany
  6. 6.Center for Musculoskeletal Surgery, Campus Virchow-KlinikumCharité-Universitätsmedizin BerlinBerlinGermany
  7. 7.Medical Faculty Mannheim, University Medical Centre MannheimUniversity of HeidelbergMannheimGermany
  8. 8.Sporthopaedicum Straubing Berlin RegensburgStraubingGermany

Personalised recommendations