Advertisement

Gender-related morphological differences in sulcus angle and condylar height for the femoral trochlea using magnetic resonance imaging

  • Yong-Gon Koh
  • Ji-Hoon Nam
  • Hyun-Seok Chung
  • Hwa-Yong Lee
  • Ho-Joong Kim
  • Hyo-Jeoung Kim
  • Kyoung-Tak KangEmail author
KNEE
  • 5 Downloads

Abstract

Purpose

This study aimed to elucidate the primary differences in trochlear morphology between men and women utilizing three-dimensional magnetic resonance image reconstruction of the femoral trochlea.

Methods

Differences in anthropometric femoral trochlea data of 975 patients (825 women, 150 men) were evaluated. The following morphological parameters were measured at three flexion angles (15°, 30°, and 45°) of the femoral trochlea: the sulcus angle, condylar height, and the trochlear groove orientation and mediolateral groove position.

Results

The sulcus angle was significantly greater in women than in men at 15° and 45° flexions (P < 0.05). However, there was no gender difference found in the sulcus angle at 30° flexion. Medial and lateral condylar height values were greater in men than in women for the three flexion angles (P < 0.01). The trochlear groove orientation and mediolateral groove position showed no gender-related differences.

Conclusions

Magnetic resonance image reconstruction demonstrated that measurement of trochlear morphology varied significantly between men and women. This study provides guidelines for the design of a suitable femoral component for total knee arthroplasty, considering gender-specific differences in the Korean population. Biomechanical guidelines for total knee arthroplasty in Korean individuals can be optimized using our finding, so as the risk of patellar dislocation to be decreased. Surgeons should be aware of gender differences in femoral trochlear to optimize choice of implant.

Level of evidence

III.

Keywords

Femoral trochlea Korean patients Morphometry analysis Condylar height Trochlear groove 

Notes

Funding

There was no funding for this study.

Compliance with ethical standards

Conflict of interest

The authors declare no conflict of interest.

Ethical approval

Approval was obtained from the Yonsei Sarang Hospital Institutional Review Board (18-DR-03).

References

  1. 1.
    Bicos J, Fulkerson JP, Amis A (2007) Current concepts review: the medial patellofemoral ligament. Am J Sports Med 35:484–492CrossRefGoogle Scholar
  2. 2.
    Biedert RM, Bachmann M (2009) Anterior-posterior trochlear measurements of normal and dysplastic trochlea by axial magnetic resonance imaging. Knee Surg Sports Traumatol Arthrosc 17:1225–1230CrossRefGoogle Scholar
  3. 3.
    Brattström H (1964) Shape of the intercondylar groove normally and in recurrent dislocation of patella. A clinical and X-ray-anatomical investigation. Acta Orthop Scand Suppl 68:Suppl 68:61–148Google Scholar
  4. 4.
    Bull AM, Katchburian MV, Shih YF, Amis AA (2002) Standardisation of the description of patellofemoral motion and comparison between different techniques. Knee Surg Sports Traumatol Arthrosc 10:184–193CrossRefGoogle Scholar
  5. 5.
    Colvin AC, West RV (2008) Patellar instability. J Bone Joint Surg Am 90:2751–2762CrossRefGoogle Scholar
  6. 6.
    Dejour D, Le Coultre B (2018) Osteotomies in Patello-Femoral Instabilities. Sports Med Arthrosc Rev 26:8–15CrossRefGoogle Scholar
  7. 7.
    Dejour D, Ntagiopoulos PG, Saffarini M (2014) Evidence of trochlear dysplasia in femoral component designs. Knee Surg Sports Traumatol Arthrosc 22:2599–2607CrossRefGoogle Scholar
  8. 8.
    Dejour H, Walch G, Neyret P, Adeleine P (1990) Dysplasia of the femoral trochlea. Rev Chir Orthop Reparatrice Appar Mot 76:45–54Google Scholar
  9. 9.
    Dejour H, Walch G, Nove-Josserand L, Guier C (1994) Factors of patellar instability: an anatomic radiographic study. Knee Surg Sports Traumatol Arthrosc 2:19–26CrossRefGoogle Scholar
  10. 10.
    Du Z, Chen S, Yan M, Yue B, Wang Y (2017) Differences between native and prosthetic knees in terms of cross-sectional morphology of the femoral trochlea: a study based on three-dimensional models and virtual total knee arthroplasty. BMC Musculoskelet Disord 18:166CrossRefGoogle Scholar
  11. 11.
    Fehring TK, Odum SM, Hughes J, Springer BD, Beaver WB Jr (2009) Differences between the sexes in the anatomy of the anterior condyle of the knee. J Bone Joint Surg Am 91:2335–2341CrossRefGoogle Scholar
  12. 12.
    Feinstein WK, Noble PC, Kamaric E, Tullos HS (1996) Anatomic alignment of the patellar groove. Clin Orthop Relat Res:64–73Google Scholar
  13. 13.
    Fucentese SF, von Roll A, Koch PP, Epari DR, Fuchs B, Schottle PB (2006) The patella morphology in trochlear dysplasia—a comparative MRI study. Knee 13:145–150CrossRefGoogle Scholar
  14. 14.
    Indelli PF, Marcucci M, Cariello D, Poli P, Innocenti M (2012) Contemporary femoral designs in total knee arthroplasty: effects on the patello-femoral congruence. Int Orthop 36:1167–1173CrossRefGoogle Scholar
  15. 15.
    Iranpour F, Merican AM, Dandachli W, Amis AA, Cobb JP (2010) The geometry of the trochlear groove. Clin Orthop Relat Res 468:782–788CrossRefGoogle Scholar
  16. 16.
    Kang KT, Son J, Kwon OR, Baek C, Heo DB, Park KM, Kim HJ, Koh YG (2016) Morphometry of femoral rotation for total knee prosthesis according to gender in a Korean population using three-dimensional magnetic resonance imaging. Knee 23:975–980CrossRefGoogle Scholar
  17. 17.
    Koeter S, Bongers EM, de Rooij J, van Kampen A (2006) Minimal rotation aberrations cause radiographic misdiagnosis of trochlear dysplasia. Knee Surg Sports Traumatol Arthrosc 14:713–717CrossRefGoogle Scholar
  18. 18.
    Kulkarni SK, Freeman MA, Poal-Manresa JC, Asencio JI, Rodriguez JJ (2000) The patellofemoral joint in total knee arthroplasty: is the design of the trochlea the critical factor? J Arthroplasty 15:424–429CrossRefGoogle Scholar
  19. 19.
    Kulkarni SK, Freeman MA, Poal-Manresa JC, Asencio JI, Rodriguez JJ (2001) The patello-femoral joint in total knee arthroplasty: is the design of the trochlea the critical factor? Knee Surg Sports Traumatol Arthrosc 9(Suppl 1):S8–S12CrossRefGoogle Scholar
  20. 20.
    Lewallen LW, McIntosh AL, Dahm DL (2013) Predictors of recurrent instability after acute patellofemoral dislocation in pediatric and adolescent patients. Am J Sports Med 41:575–581CrossRefGoogle Scholar
  21. 21.
    Li K, Langdale E, Tashman S, Harner C, Zhang X (2012) Gender and condylar differences in distal femur morphometry clarified by automated computer analyses. J Orthop Res 30:686–692CrossRefGoogle Scholar
  22. 22.
    Meijerink HJ, Barink M, van Loon CJ, Schwering PJ, Donk RD, Verdonschot N, de Waal Malefijt MC (2007) The trochlea is medialized by total knee arthroplasty: an intraoperative assessment in 61 patients. Acta Orthop 78:123–127CrossRefGoogle Scholar
  23. 23.
    Murshed KA, Çiçekcibaşi AE, Ziylan T, Karabacakoğlu A (2004) Femoral sulcus angle measurements: an anatomical study of magnetic resonance images and dry bones. Turk J Med Sci 34:165–169Google Scholar
  24. 24.
    Mwakikunga A, Katundu K, Msamati B, Adefolaju AG, Schepartz L (2016) An anatomical and osteometric study of the femoral sulcus angle in adult Malawians. Afr Health Sci 16:1182–1187CrossRefGoogle Scholar
  25. 25.
    Nelitz M, Lippacher S, Reichel H, Dornacher D (2014) Evaluation of trochlear dysplasia using MRI: correlation between the classification system of Dejour and objective parameters of trochlear dysplasia. Knee Surg Sports Traumatol Arthrosc 22:120–127CrossRefGoogle Scholar
  26. 26.
    Nelitz M, Theile M, Dornacher D, Wolfle J, Reichel H, Lippacher S (2012) Analysis of failed surgery for patellar instability in children with open growth plates. Knee Surg Sports Traumatol Arthrosc 20:822–828CrossRefGoogle Scholar
  27. 27.
    Nietosvaara Y (1994) The femoral sulcus in children. An ultrasonographic study. J Bone Jt Surg Br 76:807–809CrossRefGoogle Scholar
  28. 28.
    Paiva M, Blond L, Holmich P, Steensen RN, Diederichs G, Feller JA, Barfod KW (2018) Quality assessment of radiological measurements of trochlear dysplasia; a literature review. Knee Surg Sports Traumatol Arthrosc 26:746–755CrossRefGoogle Scholar
  29. 29.
    Pennock AT, Chang A, Doan J, Bomar JD, Edmonds EW (2018) 3D knee trochlear morphology assessment by magnetic resonance imaging in patients with normal and dysplastic trochleae. J Pediatr Orthop.  https://doi.org/10.1097/BPO.0000000000001188 Google Scholar
  30. 30.
    Riviere C, Dhaif F, Shah H, Ali A, Auvinet E, Aframian A, Cobb J, Howell S, Harris S (2018) Kinematic alignment of current TKA implants does not restore the native trochlear anatomy. Orthop Traumatol Surg Res 104:983–995CrossRefGoogle Scholar
  31. 31.
    Rosenstein AD, Veazey B, Shephard D, Xu KT (2008) Gender differences in the distal femur dimensions and variation patterns in relation to TKA component sizing. Orthopedics 31:652Google Scholar
  32. 32.
    Saffarini M, Ntagiopoulos PG, Demey G, Le Negaret B, Dejour DH (2014) Evidence of trochlear dysplasia in patellofemoral arthroplasty designs. Knee Surg Sports Traumatol Arthrosc 22:2574–2581CrossRefGoogle Scholar
  33. 33.
    Salzmann GM, Weber TS, Spang JT, Imhoff AB, Schottle PB (2010) Comparison of native axial radiographs with axial MR imaging for determination of the trochlear morphology in patients with trochlear dysplasia. Arch Orthop Trauma Surg 130:335–340CrossRefGoogle Scholar
  34. 34.
    Shih YF, Bull AM, Amis AA (2004) The cartilaginous and osseous geometry of the femoral trochlear groove. Knee Surg Sports Traumatol Arthrosc 12:300–306CrossRefGoogle Scholar
  35. 35.
    Staubli HU, Durrenmatt U, Porcellini B, Rauschning W (1999) Anatomy and surface geometry of the patellofemoral joint in the axial plane. J Bone Jt Surg Br 81:452–458CrossRefGoogle Scholar
  36. 36.
    Tardieu C, Trinkaus E (1994) Early ontogeny of the human femoral bicondylar angle. Am J Phys Anthropol 95:183–195CrossRefGoogle Scholar
  37. 37.
    Weinberg DS, Streit JJ, Gebhart JJ, Williamson DF, Goldberg VM (2015) Important differences exist in posterior condylar offsets in an osteological collection of 1058 femurs. J Arthroplasty 30:1434–1438CrossRefGoogle Scholar
  38. 38.
    Werth L, Saffarini M, Amsler F, Abdelkafy A, Hirschmann MT (2017) The need for secondary resurfacing is affected by trochlear height in total knee arthroplasty. Knee Surg Sports Traumatol Arthrosc 25:3818–3823CrossRefGoogle Scholar
  39. 39.
    Yoshioka Y, Siu D, Cooke TD (1987) The anatomy and functional axes of the femur. J Bone Jt Surg Am 69:873–880CrossRefGoogle Scholar
  40. 40.
    Yue B, Varadarajan KM, Ai S, Tang T, Rubash HE, Li G (2011) Differences of knee anthropometry between Chinese and white men and women. J Arthroplasty 26:124–130CrossRefGoogle Scholar

Copyright information

© European Society of Sports Traumatology, Knee Surgery, Arthroscopy (ESSKA) 2019

Authors and Affiliations

  1. 1.Joint Reconstruction Center, Department of Orthopaedic SurgeryYonsei Sarang HospitalSeoulSouth Korea
  2. 2.Department of Mechanical EngineeringYonsei UniversitySeoulSouth Korea
  3. 3.Spine Center, Department of Orthopaedic SurgerySeoul National University College of Medicine, Seoul National University Bundang HospitalSeongnam-siSouth Korea
  4. 4.Department of Sport and Healthy AgingKorea National Sport UniversitySeoulSouth Korea

Personalised recommendations