MRI-determined anterolateral capsule injury did not affect the pivot-shift in anterior cruciate ligament-injured knees

  • Nobuaki Miyaji
  • Yuichi HoshinoEmail author
  • Toshikazu Tanaka
  • Kyohei Nishida
  • Daisuke Araki
  • Noriyuki Kanzaki
  • Takehiko Matsushita
  • Ryosuke Kuroda



The purpose of this study was to quantitatively compare the results of pivot-shift test between knees with anterior cruciate ligament (ACL) injury with and without anterolateral capsule (ALC) injury detected on MRI. ALC injury was hypothesized to worsen rotatory knee laxity.


82 patients with unilateral ACL injury were enrolled in this study. The pivot-shift test was performed under anesthesia before ACL reconstruction. Two evaluations were conducted simultaneously: IKDC clinical grading and the quantitative evaluation using an electromagnetic measurement system that determined tibial acceleration (m/s2). Two examiners identified the ALC injury on magnetic resonance imaging (MRI) and stratified patients into two groups: ALC-injured (ALC+) and ALC-intact (ALC−). ALC injury was diagnosed if the signal intensity on coronal T2-weighted sequences is increased. After confirming the reliability of the MRI, the difference in the pivot-shift between two groups was assessed.


Because of the poor agreement between examiners with respect to the ALC evaluations (κ coefficient of 0.25 and 58.5% concordance), the result from each examiner was analyzed separately. Examiner 1 found ALC injury in 42/82 knees (51%). The two groups had similar clinical grading (glide/clunk/gross: ALC+ group 21/18/3cases vs. ALC− group 21/16/3cases) (n.s.). Tibial acceleration during pivot-shift was also similar in the ALC+ (1.4 ± 1.2 m/s2) and ALC− (1.7 ± 1.3 m/s2) groups (n.s.). Examiner 2 found ALC injury in 28/82 knees (34%). Differences in clinical grading were not observed (glide/clunk/gross: ALC+ group 16/9/3 vs. ALC− group 26/25/3) (n.s.). However, the tibial acceleration in the ALC+ group (1.2 ± 0.8 m/s2) was significantly lower than that in the ALC− group (1.7 ± 1.3 m/s2, p = 0.03).


Concomitant ALC injury in knees with ACL injury was not consistently detected on MRI and did not affect rotatory knee laxity.

Level of evidence

Case–control study, level III.


Anterior cruciate ligament Anterolateral capsule Pivot-shift Quantitative measurement MRI Electromagnetic measurement system 


Author contributions

NM, YH, TM, and RK contributed to the study concept and design. NM, YH, TT, KN, DA, and TM contributed to the acquisition, analysis, and data interpretation. NM and YH drafted the article, and NM, YH, KN, TM, and RK critically revised the article for important intellectual content. All authors had final approval of the version to be submitted for publication. NM, YH, and RK agreed to be held accountable for all aspects of the work to ensure that questions related to the accuracy or integrity of any part of the work are appropriately addressed.


This study was supported by JSPS KAKENHI Grant number JP16K10902.

Compliance with ethical standards

Conflict of interest

We have no conflicts to disclose.

Ethical approval

This study was approved by the institutional review board of Kobe University (ID no. 341).


  1. 1.
    Ayeni OR, Chahal M, Tran MN, Sprague S (2012) Pivot shift as an outcome measure for ACL reconstruction: a systematic review. Knee Surg Sports Traumatol Arthrosc 20(4):767–777CrossRefGoogle Scholar
  2. 2.
    Bull AM, Andersen HN, Basso O, Targett J, Amis AA (1999) Incidence and mechanism of the pivot shift. An in vitro study. Clin Orthop Relat Res 363:219–231CrossRefGoogle Scholar
  3. 3.
    Cianca J, John J, Pandit S, Chiou-Tan FY (2014) Musculoskeletal ultrasound imaging of the recently described anterolateral ligament of the knee. Am J Phys Med Rehabil 93(2):186CrossRefGoogle Scholar
  4. 4.
    Claes S, Vereecke E, Maes M, Victor J, Verdonk P, Bellemans J (2013) Anatomy of the anterolateral ligament of the knee. J Anat 223(4):321–328CrossRefGoogle Scholar
  5. 5.
    Crawford SN, Waterman BR, Lubowitz JH (2013) Long-term failure of anterior cruciate ligament reconstruction. Arthroscopy 29(9):1566–1571CrossRefGoogle Scholar
  6. 6.
    Devitt BM, O’Sullivan R, Feller JA, Lash N, Porter TJ, Webster KE et al (2017) MRI is not reliable in diagnosing of concomitant anterolateral ligament and anterior cruciate ligament injuries of the knee. Knee Surg Sports Traumatol Arthrosc 25(4):1345–1351CrossRefGoogle Scholar
  7. 7.
    Dodds AL, Halewood C, Gupte CM, Williams A, Amis AA (2014) The anterolateral ligament: anatomy, length changes and association with the Segond fracture. Bone Jt J 96-b(3):325–331CrossRefGoogle Scholar
  8. 8.
    Dombrowski ME, Costello JM, Ohashi B, Murawski CD, Rothrauff BB, Arilla FV et al (2016) Macroscopic anatomical, histological and magnetic resonance imaging correlation of the lateral capsule of the knee. Knee Surg Sports Traumatol Arthrosc 24(9):2854–2860CrossRefGoogle Scholar
  9. 9.
    Ferretti A, Monaco E, Fabbri M, Maestri B, De Carli A (2017) Prevalence and classification of injuries of anterolateral complex in acute anterior cruciate ligament tears. Arthroscopy 33(1):147–154CrossRefGoogle Scholar
  10. 10.
    Grood ES, Suntay WJ (1983) A joint coordinate system for the clinical description of three-dimensional motions: application to the knee. J Biomech Eng 105(2):136–144CrossRefGoogle Scholar
  11. 11.
    Guenther D, Rahnemai-Azar AA, Bell KM, Irarrazaval S, Fu FH, Musahl V et al (2017) The anterolateral capsule of the knee behaves like a sheet of fibrous tissue. Am J Sports Med 45(4):849–855CrossRefGoogle Scholar
  12. 12.
    Helito CP, Helito PV, Costa HP, Bordalo-Rodrigues M, Pecora JR, Camanho GL et al (2014) MRI evaluation of the anterolateral ligament of the knee: assessment in routine 1.5-T scans. Skelet Radiol 43(10):1421–1427CrossRefGoogle Scholar
  13. 13.
    Helito CP, Helito PVP, Costa HP, Demange MK, Bordalo-Rodrigues M (2017) Assessment of the anterolateral ligament of the knee by magnetic resonance imaging in acute injuries of the anterior cruciate ligament. Arthroscopy 33(1):140–146CrossRefGoogle Scholar
  14. 14.
    Hoshino Y, Araujo P, Ahlden M, Samuelsson K, Muller B, Hofbauer M et al (2013) Quantitative evaluation of the pivot shift by image analysis using the iPad. Knee Surg Sports Traumatol Arthrosc 21(4):975–980CrossRefGoogle Scholar
  15. 15.
    Hoshino Y, Kuroda R, Nagamune K, Yagi M, Mizuno K, Yamaguchi M et al (2007) In vivo measurement of the pivot-shift test in the anterior cruciate ligament-deficient knee using an electromagnetic device. Am J Sports Med 35(7):1098–1104CrossRefGoogle Scholar
  16. 16.
    Inderhaug E, Strand T, Fischer-Bredenbeck C, Solheim E (2013) Long-term results after reconstruction of the ACL with hamstrings autograft and transtibial femoral drilling. Knee Surg Sports Traumatol Arthrosc 21(9):2004–2010CrossRefGoogle Scholar
  17. 17.
    Irrgang JJ, Ho H, Harner CD, Fu FH (1998) Use of the International Knee Documentation Committee guidelines to assess outcome following anterior cruciate ligament reconstruction. Knee Surg Sports Traumatol Arthrosc 6(2):107–114CrossRefGoogle Scholar
  18. 18.
    Karanicolas PJ, Bhandari M, Kreder H, Moroni A, Richardson M, Walter SD et al (2009) Evaluating agreement: conducting a reliability study. J Bone Jt Surg Am 91(Suppl 3):99–106CrossRefGoogle Scholar
  19. 19.
    Kittl C, El-Daou H, Athwal KK, Gupte CM, Weiler A, Williams A et al (2016) The role of the anterolateral structures and the ACL in controlling laxity of the intact and ACL-deficient knee. Am J Sports Med 44(2):345–354CrossRefGoogle Scholar
  20. 20.
    Kocher MS, Steadman JR, Briggs KK, Sterett WI, Hawkins RJ (2004) Relationships between objective assessment of ligament stability and subjective assessment of symptoms and function after anterior cruciate ligament reconstruction. Am J Sports Med 32(3):629–634CrossRefGoogle Scholar
  21. 21.
    Labbe DR, de Guise JA, Mezghani N, Godbout V, Grimard G, Baillargeon D et al (2010) Feature selection using a principal component analysis of the kinematics of the pivot shift phenomenon. J Biomech 43(16):3080–3084CrossRefGoogle Scholar
  22. 22.
    Landis JR, Koch GG (1977) The measurement of observer agreement for categorical data. Biometrics 33(1):159–174CrossRefGoogle Scholar
  23. 23.
    Lopomo N, Signorelli C, Bonanzinga T, Marcheggiani Muccioli GM, Visani A, Zaffagnini S (2012) Quantitative assessment of pivot-shift using inertial sensors. Knee Surg Sports Traumatol Arthrosc 20(4):713–717CrossRefGoogle Scholar
  24. 24.
    Maeyama A, Hoshino Y, Debandi A, Kato Y, Saeki K, Asai S et al (2011) Evaluation of rotational instability in the anterior cruciate ligament deficient knee using triaxial accelerometer: a biomechanical model in porcine knees. Knee Surg Sports Traumatol Arthrosc 19(8):1233–1238CrossRefGoogle Scholar
  25. 25.
    Monaco E, Ferretti A, Labianca L, Maestri B, Speranza A, Kelly MJ et al (2012) Navigated knee kinematics after cutting of the ACL and its secondary restraint. Knee Surg Sports Traumatol Arthrosc 20(5):870–877CrossRefGoogle Scholar
  26. 26.
    Musahl V, Getgood A, Neyret P, Claes S, Burnham JM, Batailler C et al (2017) Contributions of the anterolateral complex and the anterolateral ligament to rotatory knee stability in the setting of ACL Injury: a roundtable discussion. Knee Surg Sports Traumatol Arthrosc 25(4):997–1008CrossRefGoogle Scholar
  27. 27.
    Musahl V, Hoshino Y, Ahlden M, Araujo P, Irrgang JJ, Zaffagnini S et al (2012) The pivot shift: a global user guide. Knee Surg Sports Traumatol Arthrosc 20(4):724–731CrossRefGoogle Scholar
  28. 28.
    Musahl V, Hoshino Y, Becker R, Karlsson J (2012) Rotatory knee laxity and the pivot shift. Knee Surg Sports Traumatol Arthrosc 20(4):601–602CrossRefGoogle Scholar
  29. 29.
    Musahl V, Rahnemai-Azar AA, Costello J, Arner JW, Fu FH, Hoshino Y et al (2016) The influence of meniscal and anterolateral capsular injury on knee laxity in patients with anterior cruciate ligament injuries. Am J Sports Med 44(12):3126–3131CrossRefGoogle Scholar
  30. 30.
    Nagai K, Hoshino Y, Nishizawa Y, Araki D, Matsushita T, Matsumoto T et al (2015) Quantitative comparison of the pivot shift test results before and after anterior cruciate ligament reconstruction by using the three-dimensional electromagnetic measurement system. Knee Surg Sports Traumatol Arthrosc 23(10):2876–2881CrossRefGoogle Scholar
  31. 31.
    Parsons EM, Gee AO, Spiekerman C, Cavanagh PR (2015) The biomechanical function of the anterolateral ligament of the knee. Am J Sports Med 43(3):669–674CrossRefGoogle Scholar
  32. 32.
    Rahnemai-Azar AA, Miller RM, Guenther D, Fu FH, Lesniak BP, Musahl V et al (2016) Structural properties of the anterolateral capsule and iliotibial band of the knee. Am J Sports Med 44(4):892–897CrossRefGoogle Scholar
  33. 33.
    Rasmussen MT, Nitri M, Williams BT, Moulton SG, Cruz RS, Dornan GJ et al (2016) An in vitro robotic assessment of the anterolateral ligament, part 1: secondary role of the anterolateral ligament in the setting of an anterior cruciate ligament injury. Am J Sports Med 44(3):585–592CrossRefGoogle Scholar
  34. 34.
    Spencer L, Burkhart TA, Tran MN, Rezansoff AJ, Deo S, Caterine S et al (2015) Biomechanical analysis of simulated clinical testing and reconstruction of the anterolateral ligament of the knee. Am J Sports Med 43(9):2189–2197CrossRefGoogle Scholar
  35. 35.
    Taneja AK, Miranda FC, Braga CA, Gill CM, Hartmann LG, Santos DC et al (2015) MRI features of the anterolateral ligament of the knee. Skelet Radiol 44(3):403–410CrossRefGoogle Scholar
  36. 36.
    Vincent JP, Magnussen RA, Gezmez F, Uguen A, Jacobi M, Weppe F et al (2012) The anterolateral ligament of the human knee: an anatomic and histologic study. Knee Surg Sports Traumatol Arthrosc 20(1):147–152CrossRefGoogle Scholar

Copyright information

© European Society of Sports Traumatology, Knee Surgery, Arthroscopy (ESSKA) 2019

Authors and Affiliations

  1. 1.Department of Orthopaedic Surgery, Graduate School of MedicineKobe UniversityKobeJapan

Personalised recommendations