Knee Surgery, Sports Traumatology, Arthroscopy

, Volume 27, Issue 2, pp 590–595 | Cite as

Abnormal tibial alignment is a risk factor for lateral meniscus posterior root tears in patients with anterior cruciate ligament ruptures

  • Kelechi R. OkorohaEmail author
  • Ravi B. Patel
  • Omar Kadri
  • Toufic R. Jildeh
  • Andrew Krause
  • Caleb Gulledge
  • Eric C. Makhni
  • Vasilios Moutzouros



The purpose of this study was to identify if abnormal tibial alignment was a risk factor for lateral meniscus posterior root tears (LMPRT) in patients with acute anterior cruciate ligament (ACL) ruptures.


The medical charts of 200 patients treated for ACL ruptures between 2013 and 2016 were retrospectively reviewed and evaluated. MRI images and reports were assessed for concurrent meniscal tears. Radiographs were reviewed for tibia vara and tibial slope angles and MRI reports identifying lateral root tears were compared to intraoperative reports to determine accuracy. Multiple logistic regression models were constructed to identify potential risk factors for LMPRTs.


Of the 200 patients reviewed, a total of 97 individuals with concurrent meniscal injuries were identified. In patients sustaining a concurrent meniscal injury, there was a 4% incidence of medial meniscus posterior root tears and a 10.3% incidence of LMPRTs. Patients sustaining an ACL injury with an LMPRT were found to have greater tibia vara angles (4.2 ± 1.0 vs. 2.9 ± 1.7; p = 0.024), increased tibial slopes (12.6 ± 1.5 vs. 10.7 ± 2.9; p = 0.034), and higher BMIs (27.3 ± 2.9 vs. 25.3 ± 5.9; p = 0.034) when compared to patients without meniscus tears. There was low agreement between MRI and arthroscopic findings (kappa rate = 0.54). Multiple logistic regression analysis demonstrated that a tibia vara angle > 3 was associated with a 5.2-fold increase (95% CI 0.99–27.01; p = 0.050), and a tibial slope > 12 with a 5.4-fold increase (95% CI 1.03–28.19; p = 0.046) in LMPRTs.


Patients with greater tibia varus angles, increased tibial slopes, and higher BMIs were found to have an increased risk of LMPRTs when sustaining an ACL rupture. There was a low rate of agreement between MRI and arthroscopy in identifying LMPRTs. In patients with ACL ruptures who have abnormal tibial alignment or increased BMI, physicians should be watchful for lateral meniscus posterior root tears.

Level of evidence



Meniscus Root tear Knee ACL Ligament Risk factors 



Lateral meniscus posterior root tear


Medial meniscus posterior root tear


Anterior cruciate ligament


Body mass index


American Society of Anesthesiologists


Kellgren–Lawrence Grade


Tibial proximal anatomic axis


Anterior tibial cortex


Posterior tibial cortex


Compliance with ethical standards

Conflict of interest

All authors declare that they have no conflict of interest.

Ethical approval

The local institutional review board approved this study (IRB: Henry Ford Hospital, Detroit, MI).


  1. 1.
    Ahn JH, Lee YS, Yoo JC, Chang MJ, Park SJ, Pae YR (2010) Results of arthroscopic all-inside repair for lateral meniscus root tear in patients undergoing concomitant anterior cruciate ligament reconstruction. Arthroscopy 26:67–75CrossRefPubMedGoogle Scholar
  2. 2.
    Allaire R, Muriuki M, Gilbertson L, Harner CD (2008) Biomechanical consequences of a tear of the posterior root of the medial meniscus. Similar to total meniscectomy. J Bone Jt Surg Am 90:1922–1931CrossRefGoogle Scholar
  3. 3.
    Cho SD, Youm YS, Kim JH, Cho HY, Kim KH (2016) Patterns and influencing factors of medial meniscus tears in varus knee osteoarthritis. Knee Surg Relat Res 28:142–146CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    De Smet AA, Blankenbaker DG, Kijowski R, Graf BK, Shinki K (2009) MR diagnosis of posterior root tears of the lateral meniscus using arthroscopy as the reference standard. AJR Am J Roentgenol 192:480–486CrossRefPubMedGoogle Scholar
  5. 5.
    Doherty DBLW (2016) Meniscal root tears: identification and repair. Am J Orthop 45:5Google Scholar
  6. 6.
    Dufka FL, Lansdown DA, Zhang AL, Allen CR, Ma CB, Feeley BT (2016) Accuracy of MRI evaluation of meniscus tears in the setting of ACL injuries. Knee 23:460–464CrossRefPubMedGoogle Scholar
  7. 7.
    Forkel P, Reuter S, Sprenker F, Achtnich A, Herbst E, Imhoff A et al (2015) Different patterns of lateral meniscus root tears in ACL injuries: application of a differentiated classification system. Knee Surg Sports Traumatol Arthrosc 23:112–118CrossRefPubMedGoogle Scholar
  8. 8.
    Gupta R, Masih GD, Chander G, Bachhal V (2016) Delay in surgery predisposes to meniscal and chondral injuries in anterior cruciate ligament deficient knees. Indian J Orthop 50:492–498CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Hagino T, Ochiai S, Senga S, Yamashita T, Wako M, Ando T et al (2015) Meniscal tears associated with anterior cruciate ligament injury. Arch Orthop Trauma Surg 135:1701–1706CrossRefPubMedGoogle Scholar
  10. 10.
    Hwang BY, Kim SJ, Lee SW, Lee HE, Lee CK, Hunter DJ et al (2012) Risk factors for medial meniscus posterior root tear. Am J Sports Med 40:1606–1610CrossRefPubMedGoogle Scholar
  11. 11.
    Kaeding CC, Leger-St-Jean B, Magnussen RA (2017) Epidemiology and diagnosis of anterior cruciate ligament injuries. Clin Sports Med 36:1–8CrossRefPubMedGoogle Scholar
  12. 12.
    Koenig JH, Ranawat AS, Umans HR, Difelice GS (2009) Meniscal root tears: diagnosis and treatment. Arthroscopy 25:1025–1032CrossRefPubMedGoogle Scholar
  13. 13.
    Kohn MD, Sassoon AA, Fernando ND (2016) Classifications in brief: Kellgren–Lawrence classification of osteoarthritis. Clin Orthop Relat Res 474:1886–1893CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Koo JH, Choi SH, Lee SA, Wang JH (2015) Comparison of medial and lateral meniscus root tears. PLoS One 10:e0141021CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Krutsch W, Zellner J, Baumann F, Pfeifer C, Nerlich M, Angele P (2017) Timing of anterior cruciate ligament reconstruction within the first year after trauma and its influence on treatment of cartilage and meniscus pathology. Knee Surg Sports Traumatol Arthrosc 25:418–425CrossRefPubMedGoogle Scholar
  16. 16.
    Krych AJ, Wu IT, Desai VS, Murthy NS, Collins MS, Saris DBF et al (2018) High rate of missed lateral meniscus posterior root tears on preoperative magnetic resonance imaging. Orthop J Sports Med 6:2325967118765722PubMedPubMedCentralGoogle Scholar
  17. 17.
    LaPrade CM, Jansson KS, Dornan G, Smith SD, Wijdicks CA, LaPrade RF (2014) Altered tibiofemoral contact mechanics due to lateral meniscus posterior horn root avulsions and radial tears can be restored with in situ pull-out suture repairs. J Bone Jt Surg Am 96:471–479CrossRefGoogle Scholar
  18. 18.
    LaPrade RF, Ho CP, James E, Crespo B, LaPrade CM, Matheny LM (2015) Diagnostic accuracy of 3.0 T magnetic resonance imaging for the detection of meniscus posterior root pathology. Knee Surg Sports Traumatol Arthrosc 23:152–157CrossRefPubMedGoogle Scholar
  19. 19.
    Markl I, Zantop T, Zeman F, Seitz J, Angele P (2015) The effect of tibial slope in acute ACL-insufficient patients on concurrent meniscal tears. Arch Orthop Trauma Surg 135:1141–1149CrossRefPubMedGoogle Scholar
  20. 20.
    Matheny LM, Ockuly AC, Steadman JR, LaPrade RF (2015) Posterior meniscus root tears: associated pathologies to assist as diagnostic tools. Knee Surg Sports Traumatol Arthrosc 23:3127–3131CrossRefPubMedGoogle Scholar
  21. 21.
    Moatshe G, Chahla J, Slette E, Engebretsen L, Laprade RF (2016) Posterior meniscal root injuries. Acta Orthop 87:452–458CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Palisch ARW, Winters RR, Willis MH, Bray CD, Shybut TB (2016) Posterior root meniscal tears: preoperative, intraoperative, and postoperative imaging for trans-tibial pullout repair. RadioGraphics 36:15CrossRefGoogle Scholar
  23. 23.
    Song GY, Zhang H, Liu X, Zhang J, Xue Z, Qian Y et al (2017) Complete posterolateral meniscal root tear is associated with high-grade pivot-shift phenomenon in noncontact anterior cruciate ligament injuries. Knee Surg Sports Traumatol Arthrosc 25:1030–1037CrossRefPubMedGoogle Scholar
  24. 24.
    Sonnery-Cottet B, Conteduca J, Thaunat M, Gunepin FX, Seil R (2014) Hidden lesions of the posterior horn of the medial meniscus: a systematic arthroscopic exploration of the concealed portion of the knee. Am J Sports Med 42:921–926CrossRefPubMedGoogle Scholar
  25. 25.
    Spindler KS, Bergfield JP, Andrish JA, Weiker JT, Anderson GG, Piraino TE, Richmond DW, Medendorp BJ SV (1993) Prospective study of osseous, articular, and meniscal lesions in recent anterior cruciate ligament tears by magnetic resonance imaging and arthroscopy. Am J Sports Med 21:7CrossRefGoogle Scholar
  26. 26.
    Utzschneider S, Goettinger M, Weber P, Horng A, Glaser C, Jansson V et al (2011) Development and validation of a new method for the radiologic measurement of the tibial slope. Knee Surg Sports Traumatol Arthrosc 19:1643–1648CrossRefPubMedGoogle Scholar
  27. 27.
    Wong KP, Han AX, Wong JL, Lee DY (2017) Reliability of magnetic resonance imaging in evaluating meniscal and cartilage injuries in anterior cruciate ligament-deficient knees. Knee Surg Sports Traumatol Arthrosc 25:411–417CrossRefPubMedGoogle Scholar

Copyright information

© European Society of Sports Traumatology, Knee Surgery, Arthroscopy (ESSKA) 2018

Authors and Affiliations

  • Kelechi R. Okoroha
    • 1
    Email author
  • Ravi B. Patel
    • 1
  • Omar Kadri
    • 1
  • Toufic R. Jildeh
    • 1
  • Andrew Krause
    • 2
  • Caleb Gulledge
    • 2
  • Eric C. Makhni
    • 1
  • Vasilios Moutzouros
    • 1
  1. 1.Department of Orthopaedic SurgeryHenry Ford Health System, Henry Ford HospitalDetroitUSA
  2. 2.Wayne State University School of MedicineDetroitUSA

Personalised recommendations