Advertisement

Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Assessment of rotatory laxity in anterior cruciate ligament-deficient knees using magnetic resonance imaging with Porto-knee testing device

Abstract

Purpose

Objective evaluation of both antero-posterior translation and rotatory laxity of the knee remains a target to be accomplished. This is true for both preoperative planning and postoperative assessment of different ACL reconstruction emerging techniques. The ideal measurement tool should be simple, accurate and reproducible, while enabling to assess both “anatomy” and “function” during the same examination. The purpose of this study is to evaluate the clinical effectiveness of a new in-house-developed testing device, the so-called Porto-knee testing device (PKTD). The PKTD is aimed to be used on the evaluation of both antero-posterior and rotatory laxity of the knee during MRI exams.

Methods

Between 2008 and 2010, 33 patients with ACL-deficient knees were enrolled for the purpose of this study. All patients were evaluated in the office and under anesthesia with Lachman test, lateral pivot-shift test and anterior drawer test. All cases were studied preoperatively with KT-1000 and MRI with PKTD, and examinations performed by independent observers blinded for clinical evaluation. During MRI, we have used a PKTD that applies antero-posterior translation and permits free tibial rotation through a standardized pressure (46.7 kPa) in the proximal posterior region of the leg. Measurements were taken for both knees and comparing side-to-side. Five patients with partial ruptures were excluded from the group of 33.

Results

For the 28 remaining patients, 3 women and 25 men, with mean age of 33.4 ± 9.4 years, 13 left and 15 right knees were tested. No significant correlation was noticed for Lachman test and PKTD results (n.s.). Pivot-shift had a strong positive correlation with the difference in anterior translation registered in lateral and medial tibia plateaus of injured knees (cor. coefficient = 0.80; p < 0.05), and with the difference in this parameter as compared to side-to-side (cor. coefficient = 0.83; p < 0.05).

Considering the KT-1000 difference between injured and healthy knees, a very strong positive correlation was found for side-to-side difference in medial (cor. coefficient = 0.73; p < 0.05) and lateral (cor. coefficient = 0.5; p < 0.05) tibial plateau displacement using PKTD.

Conclusion

The PKTD proved to be a reliable tool in assessment of antero-posterior translation (comparing with KT-1000) and rotatory laxity (compared with lateral pivot-shift under anesthesia) of the ACL-deficient knee during MRI examination.

Level of evidence

Therapeutic studies, Level IV.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3

References

  1. 1.

    Boyer P, Djian P, Christel P, Paoletti X, Degeorges R (2004) Reliability of the KT-1000 arthrometer (Medmetric) for measuring anterior knee laxity: comparison with Telos in 147 knees. Rev Chir Orthop Reparatrice Appar Mot 90(8):757–764

  2. 2.

    Branch TP, Mayr HO, Browne JE, Campbell JC, Stoehr A, Jacobs CA (2010) Instrumented examination of anterior cruciate ligament injuries: minimizing flaws of the manual clinical examination. Arthroscopy 26(7):997–1004

  3. 3.

    Citak M, Suero EM, Rozell JC, Bosscher MR, Kuestermeyer J, Pearle AD (2011) A mechanized and standardized pivot shifter: technical description and first evaluation. Knee Surg Sports Traumatol Arthrosc 19(5):707–711

  4. 4.

    Daniel DM, Stone ML, Sachs R, Malcom L (1985) Instrumented measurement of anterior knee laxity in patients with acute anterior cruciate ligament disruption. Am J Sports Med 13(6):401–407

  5. 5.

    Engebretsen L, Wijdicks CA, Anderson CJ, Westerhaus B, Laprade RF (2011) Evaluation of a simulated pivot shift test: a biomechanical study. Knee Surg Sports Traumatol Arthrosc. doi:10.1007/s00167-011-1744-1

  6. 6.

    Hemmerich A, van der Merwe W, Batterham M, Vaughan CL (2011) Knee rotational laxity in a randomized comparison of single- versus double-bundle anterior cruciate ligament reconstruction. Am J Sports Med 39(1):48–56

  7. 7.

    Hughston JC, Andrews JR, Cross MJ, Moschi A (1976) Classification of knee ligament instabilities. Part I. The medial compartment and cruciate ligaments. J Bone Joint Surg Am 58(2):159–172

  8. 8.

    Irrgang JJ, Bost JE, Fu FH (2009) Re: Outcome of single-bundle versus double-bundle reconstruction of the anterior cruciate ligament: a meta-analysis. Am J Sports Med 37(2):421–422

  9. 9.

    Izawa T, Okazaki K, Tashiro Y, Matsubara H, Miura H, Matsuda S, Hashizume M, Iwamoto Y (2011) Comparison of rotatory stability after anterior cruciate ligament reconstruction between single-bundle and double-bundle techniques. Am J Sports Med 39(7):1470–1477

  10. 10.

    Jardin C, Chantelot C, Migaud H, Gougeon F, Debroucker MJ, Duquennoy A (1999) Reliability of the KT-1000 arthrometer in measuring anterior laxity of the knee: comparative analysis with Telos of 48 reconstructions of the anterior cruciate ligament and intra- and interobserver reproducibility. Rev Chir Orthop Reparatrice Appar Mot 85(7):698–707

  11. 11.

    Katz JW, Fingeroth RJ (1986) The diagnostic accuracy of ruptures of the anterior cruciate ligament comparing the Lachman test, the anterior drawer sign, and the pivot shift test in acute and chronic knee injuries. Am J Sports Med 14(1):88–91

  12. 12.

    Kocher MS, Steadman JR, Briggs KK, Sterett WI, Hawkins RJ (2004) Relationships between objective assessment of ligament stability and subjective assessment of symptoms and function after anterior cruciate ligament reconstruction. Am J Sports Med 32(3):629–634

  13. 13.

    Lane CG, Warren R, Pearle AD (2008) The pivot shift. J Am Acad Orthop Surg 16(12):679–688

  14. 14.

    Lob T, Verheyden AP, Josten Ch, F S (2006) The function of the ACL measured in an vertical opened MRI (0.5 Tesla). Paper presented at the 12th ESSKA Congress, Innsbruck, Austria

  15. 15.

    Lorbach O, Wilmes P, Theisen D, Brockmeyer M, Maas S, Kohn D, Seil R (2009) Reliability testing of a new device to measure tibial rotation. Knee Surg Sports Traumatol Arthrosc 17(8):920–926

  16. 16.

    Lorenz S, Illingworth KD, Fu FH (2009) Diagnosis of isolated posterolateral bundle tears of the anterior cruciate ligament. Arthroscopy 25(11):1203–1204

  17. 17.

    Lubowitz JH, Ahmad CS, Anderson K (2011) All-inside anterior cruciate ligament graft-link technique: second-generation, no-incision anterior cruciate ligament reconstruction. Arthroscopy 27(5):717–727

  18. 18.

    Lubowitz JH, Poehling GG (2010) Understanding ACL research requires patience and persistence. Arthroscopy 26(7):869–871

  19. 19.

    Mayr HO, Hoell A, Bernstein A, Hube R, Zeiler C, Kalteis T, Suedkamp NP, Stoehr A (2011) Validation of a measurement device for instrumented quantification of anterior translation and rotational assessment of the knee. Arthroscopy 27(8):1096–1104

  20. 20.

    Meredick RB, Vance KJ, Appleby D, Lubowitz JH (2008) Outcome of single-bundle versus double-bundle reconstruction of the anterior cruciate ligament: a meta-analysis. Am J Sports Med 36(7):1414–1421

  21. 21.

    Musahl V, Voos J, O’Loughlin PF, Stueber V, Kendoff D, Pearle AD (2010) Mechanized pivot shift test achieves greater accuracy than manual pivot shift test. Knee Surg Sports Traumatol Arthrosc 18(9):1208–1213

  22. 22.

    Ochi M, Adachi N, Deie M, Kanaya A (2006) Anterior cruciate ligament augmentation procedure with a 1-incision technique: anteromedial bundle or posterolateral bundle reconstruction. Arthroscopy 22(4):e461–e465

  23. 23.

    Okazaki K, Miura H, Matsuda S, Yasunaga T, Nakashima H, Konishi K, Iwamoto Y, Hashizume M (2007) Assessment of anterolateral rotatory instability in the anterior cruciate ligament-deficient knee using an open magnetic resonance imaging system. Am J Sports Med 35(7):1091–1097

  24. 24.

    Pollet V, Barrat D, Meirhaeghe E, Vaes P, Handelberg F (2005) The role of the Rolimeter in quantifying knee instability compared to the functional outcome of ACL-reconstructed versus conservatively-treated knees. Knee Surg Sports Traumatol Arthrosc 13(1):12–18

  25. 25.

    Pugh L, Mascarenhas R, Arneja S, Chin PY, Leith JM (2009) Current concepts in instrumented knee-laxity testing. Am J Sports Med 37(1):199–210

  26. 26.

    Robert H, Nouveau S, Gageot S, Gagniere B (2009) A new knee arthrometer, the GNRB: experience in ACL complete and partial tears. Orthop Traumatol Surg Res 95(3):171–176

  27. 27.

    Schulz MS, Russe K, Lampakis G, Strobel MJ (2005) Reliability of stress radiography for evaluation of posterior knee laxity. Am J Sports Med 33(4):502–506

  28. 28.

    Sonnery-Cottet B, Chambat P (2007) Arthroscopic identification of the anterior cruciate ligament posterolateral bundle: the figure-of-four position. Arthroscopy 23(10):e1121–e1123

  29. 29.

    Sonnery-Cottet B, Lavoie F, Ogassawara R, Scussiato RG, Kidder JF, Chambat P (2010) Selective anteromedial bundle reconstruction in partial ACL tears: a series of 36 patients with mean 24 months follow-up. Knee Surg Sports Traumatol Arthrosc 18(1):47–51

  30. 30.

    Sorensen OG, Larsen K, Jakobsen BW, Kold S, Hansen TB, Lind M, Soballe K (2011) The combination of radiostereometric analysis and the telos stress device results in poor precision for knee laxity measurements after anterior cruciate ligament reconstruction. Knee Surg Sports Traumatol Arthrosc 19(3):355–362

  31. 31.

    Tashiro Y, Okazaki K, Miura H, Matsuda S, Yasunaga T, Hashizume M, Nakanishi Y, Iwamoto Y (2009) Quantitative assessment of rotatory instability after anterior cruciate ligament reconstruction. Am J Sports Med 37(5):909–916

  32. 32.

    Tsai AG, Musahl V, Steckel H, Bell KM, Zantop T, Irrgang JJ, Fu FH (2008) Rotational knee laxity: reliability of a simple measurement device in vivo. BMC Musculoskelet Disord 9:35–43

  33. 33.

    Van Dyck P, De Smet E, Veryser J, Lambrecht V, Gielen JL, Vanhoenacker FM, Dossche L, Parizel PM (2011) Partial tear of the anterior cruciate ligament of the knee: injury patterns on MR imaging. Knee Surg Sports Traumatol Arthrosc. doi:10.1007/s00167-011-1617-7

  34. 34.

    Woo SLY, Fisher MB (2009) Evaluation of knee stability with use of a robotic system. J Bone Joint Surg (Am) 91(1):78–84

  35. 35.

    Zaffagnini S, Bignozzi S, Martelli S, Imakiire N, Lopomo N, Marcacci M (2006) New intraoperative protocol for kinematic evaluation of ACL reconstruction: preliminary results. Knee Surg Sports Traumatol Arthrosc 14(9):811–816

Download references

Acknowledgments

The authors wish to thank Pedro Campelos, André Silva and Rogério Pereira for their clinical and technical support in the field of research at Saúde Atlântica F.C. Porto Sports Center.

Author information

Correspondence to João Espregueira-Mendes.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Espregueira-Mendes, J., Pereira, H., Sevivas, N. et al. Assessment of rotatory laxity in anterior cruciate ligament-deficient knees using magnetic resonance imaging with Porto-knee testing device. Knee Surg Sports Traumatol Arthrosc 20, 671–678 (2012). https://doi.org/10.1007/s00167-012-1914-9

Download citation

Keywords

  • Knee
  • Lachman test
  • Magnetic resonance imaging associated device
  • Pivot-shift
  • Rotatory laxity