Comparison of three non-invasive quantitative measurement systems for the pivot shift test

  • 561 Accesses

  • 48 Citations



The purpose of this study was to evaluate three different non-invasive measuring devices for the pivot shift phenomenon with reference to direct bony movement measured by an electromagnetic device rigidly attached to the tibia and femur.


A lower body cadaveric specimen was prepared to create a positive pivot shift in both knees. Twelve expert knee surgeons from worldwide performed their preferred pivot shift technique three times in each knee. After watching an instructional video, the examiners used a standardized technique to perform three additional pivot shift maneuvers in each knee. An electromagnetic tracking system, rigidly attached to femur and tibia, was used to provide reference measurements during the pivot shift test. Three different devices were correlated to the reference method and evaluated in this study: (1) Electromagnetic tracking system with skin sensors; (2) Triaxial accelerometer system; (3) Simple image analysis.


When results from both pivot shift techniques (preferred and standardized) were combined, the electromagnetic tracking system with skin sensors showed positive correlation with the reference measurement for acceleration and translation parameters (r = 0.88 and r = 0.67, respectively; both P < 0.01); The triaxial accelerometer system demonstrated good correlation with the reference measurement for acceleration (r = 0.75; P < 0.001). The image analysis system was poorly correlated to the translation of the reference measurement (r = 0.24; P < 0.01).


The electromagnetic tracking system with skin sensors provided the best correlation with the reference method. The triaxial accelerometer showed also a good correlation and the image analysis system showed a positive, but poor correlation with the reference method. More research is needed in order to validate simple and non-invasive devices for clinical application.

This is a preview of subscription content, log in to check access.

Access options

Buy single article

Instant unlimited access to the full article PDF.

US$ 39.95

Price includes VAT for USA

Subscribe to journal

Immediate online access to all issues from 2019. Subscription will auto renew annually.

US$ 199

This is the net price. Taxes to be calculated in checkout.

Fig. 1
Fig. 2
Fig. 3


  1. 1.

    Galway HR, MacIntosh DL (1980) The lateral pivot shift: a symptom and sign of anterior cruciate ligament insufficiency. Clin Orthop Relat Res 147:45–50

  2. 2.

    Slocum DB, James SL, Larson RL, Singer KM (1976) Clinical test for anterolateral rotary instability of the knee. Clin Orthop Relat Res 118:63–69

  3. 3.

    Kuroda R, Hoshino Y, Kubo S, Araki D, Oka S, Nagamune K, Kurosaka M (2011) Similarities and differences of diagnostic manual tests for anterior cruciate ligament insufficiency: a global survey and kinematics assessment. Am J Sports Med 14(5):236–255. doi:10.1177/0363546511423634

  4. 4.

    Noyes FR, Grood ES, Cummings JF, Wroble RR (1991) An analysis of the pivot shift phenomenon: the knee motions and subluxations induced by different examiners. Am J Sports Med 19(2):148–155

  5. 5.

    Bedi A, Musahl V, Lane C, Citak M, Warren RF, Pearle AD (2010) Lateral compartment translation predicts the grade of pivot shift: a cadaveric and clinical analysis. Knee Surg Sports Traumatol Arthrosc 18(9):1269–1276

  6. 6.

    Bignozzi S, Zaffagnini S, Lopomo N, Fu FH, Irrgang JJ, Marcacci M (2010) Clinical relevance of static and dynamic tests after anatomical double-bundle ACL reconstruction. Knee Surg Sports Traumatol Arthrosc 18(1):37–42

  7. 7.

    Hoshino Y, Kuroda R, Nagamune K, Yagi M, Mizuno K, Yamaguchi M, Muratsu H, Yoshiya S, Kurosaka M (2007) In vivo measurement of the pivot-shift test in the anterior cruciate ligament-deficient knee using an electromagnetic device. Am J Sports Med 35(7):1098–1104

  8. 8.

    Katchburian M, Hassan A, Amis A (2002) Intraoperative measurement of knee kinematics in reconstruction of the anterior cruciate ligament. J Bone Jt Surg Br 84(7):1075–1081

  9. 9.

    Labbe DR, de Guise JA, Mezghani N, Godbout V, Grimard G, Baillargeon D, Lavigne P, Fernandes J, Ranger P, Hagemeister N (2010) Feature selection using a principal component analysis of the kinematics of the pivot shift phenomenon. J Biomech 43(16):3080–3084

  10. 10.

    Lane CG, Warren RF, Stanford FC, Kendoff D, Pearle AD (2008) In vivo analysis of the pivot shift phenomenon during computer navigated ACL reconstruction. Knee Surg Sports Traumatol Arthrosc 16(5):487–492

  11. 11.

    Lopomo N, Zaffagnini S, Bignozzi S, Visani A, Marcacci M (2010) Pivot-shift test: analysis and quantification of knee laxity parameters using a navigation system. J Orthop Res 28(2):164–169

  12. 12.

    Maeyama A, Hoshino Y, Debandi A, Kato Y, Saeki K, Asai S, Goto B, Smolinski P, Fu FH (2011) Evaluation of rotational instability in the anterior cruciate ligament deficient knee using triaxial accelerometer: a biomechanical model in porcine knees. Knee Surg Sports Traumatol Arthrosc 19(8):1233–1238

  13. 13.

    Pearle AD, Kendoff D, Musahl V, Warren RF (2009) The pivot-shift phenomenon during computer-assisted anterior cruciate ligament reconstruction. J Bone Jt Surg Am 91(Suppl 1):115–118

  14. 14.

    Hoshino Y, Kuroda R, Nagamune K, Nishimoto K, Yagi M, Mizuno K, Yoshiya S, Kurosaka M (2007) The effect of graft tensioning in anatomic 2-bundle ACL reconstruction on knee joint kinematics. Knee Surg Sports Traumatol Arthrosc 15(5):508–514

  15. 15.

    Hardaker WT, Garrett WE, Bassett FH (1990) Evaluation of acute traumatic hemarthrosis of the knee joint. South Med J 83(6):640–644

  16. 16.

    Grood ES, Suntay WJ (1983) A joint coordinate system for the clinical description of three-dimensional motions: application to the knee. J Biomech Eng 105(2):136–144

  17. 17.

    Nishimoto K, Kuroda R, Mizuno K, Hoshino Y, Nagamune K, Kubo S, Yagi M, Yamaguchi M, Yoshiya S, Kurosaka M (2008) Analysis of the graft bending angle at the femoral tunnel aperture in anatomic double bundle anterior cruciate ligament reconstruction: a comparison of the transtibial and the far anteromedial portal technique. Knee Surg Sports Traumatol Arthrosc 17(3):270–276

  18. 18.

    Araki D, Kuroda R, Kubo S, Fujita N, Tei K, Nishimoto K, Hoshino Y, Matsushita T, Matsumoto T, Nagamune K, Kurosaka M (2010) A prospective randomised study of anatomical single-bundle versus double-bundle anterior cruciate ligament reconstruction: quantitative evaluation using an electromagnetic measurement system. Int Orthop 35(3):439–446

  19. 19.

    Fujita N, Kuroda R, Matsumoto T, Yamaguchi M, Yagi M, Matsumoto A, Kubo S, Matsushita T, Hoshino Y, Nishimoto K, Araki D, Kurosaka M (2011) Comparison of the clinical outcome of double-bundle, anteromedial single-bundle, and posterolateral single-bundle anterior cruciate ligament reconstruction using hamstring tendon graft with minimum 2-year follow-up. Arthroscopy 27(7):906–913

  20. 20.

    Hoshino Y, Kuroda R, Nagamune K, Araki D, Kubo S, Yamaguchi M, Kurosaka M (2011) Optimal measurement of clinical rotational test for evaluating anterior cruciate ligament insufficiency. Knee Surg Sports Traumatol Arthrosc 36(34):125–136. doi:10.1007/s00167-011-1643-5

  21. 21.

    Kubo S, Muratsu H, Yoshiya S, Mizuno K, Kurosaka M (2007) Reliability and usefulness of a new in vivo measurement system of the pivot shift. Clin Orthop Relat Res 454:54–58

  22. 22.

    Yagi M, Kuroda R, Nagamune K, Yoshiya S, Kurosaka M (2007) Double-bundle ACL reconstruction can improve rotational stability. Clin Orthop Relat Res 454:100–107

  23. 23.

    Nafis C, Jensen V, Beauregard L, Anderson P (2006) Method for estimating dynamic EM tracking accuracy of surgical navigation tools. Progr Biomed Opt Imaging—Proc SPIE 6141:152–167

  24. 24.

    Benjaminse A, Gokeler A, van der Schans CP (2006) Clinical diagnosis of an anterior cruciate ligament rupture: a meta-analysis. J Orthop Phys Ther 36(5):267–288

  25. 25.

    Boeree NR, Ackroyd CE (1991) Assessment of the menisci and cruciate ligaments: an audit of clinical practice. Injury 22(4):291–294

  26. 26.

    Richter J, Dàvid A, Pape HG, Ostermann PA, Muhr G (1996) Diagnosis of acute rupture of the anterior cruciate ligament: value of ultrasonic in addition to clinical examination. Der Unfallchirurg 99(2):124–129

  27. 27.

    Rubinstein RA, Shelbourne KD, McCarroll JR, VanMeter CD, Rettig AC (1994) The accuracy of the clinical examination in the setting of posterior cruciate ligament injuries. Am J Sports Med 22(4):550–557

  28. 28.

    Steinbrück K, Wiehmann JC (1988) Examination of the knee joint: the value of clinical findings in arthroscopic control. Zeitschrift für Orthopädie und ihre Grenzgebiete 126(3):289–295

  29. 29.

    Lopomo N, Zaffagnini S, Signorelli C, Bignozzi S, Giordano G, Marcheggiani Muccioli GM, Visani A (2011) An original clinical methodology for non-invasive assessment of pivot-shift test. Comput Methods Biomech Biomed Eng 12(23):125–136. doi:10.1080/10255842.2011.591788

Download references


The authors would like to sincerely thank the expert surgeons for their participation and inspiring comments during the study (Drs. Roland Becker, Shiyi Chen, Moises Cohen, Andreas Imhoff, Timo Jarvela, Jon Karlsson, Masahiro Kurosaka, Benjamin Ma, Willem van der Merwe, Philippe Neyret, Robert Smigielski, Stefano Zaffagnini).

Author information

Correspondence to Paulo H. Araujo.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (WMV 5,476 kb)

Supplementary material 1 (WMV 5,476 kb)

Supplementary material 2 (PDF 1,414 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Araujo, P.H., Ahlden, M., Hoshino, Y. et al. Comparison of three non-invasive quantitative measurement systems for the pivot shift test. Knee Surg Sports Traumatol Arthrosc 20, 692–697 (2012).

Download citation


  • ACL
  • Pivot shift
  • Quantitative analysis
  • Acceleration
  • Anterior tibial translation