Advertisement

Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Image-matching technique can detect rotational and AP instabilities in chronic ACL-deficient knees

Abstract

Purpose

The purpose of this study was to quantify rotational and antero-posterior instabilities using biplanar image-matching technique.

Methods

Biplanar radiographs of both chronic ACL-deficient knees and contralateral uninjured knees were taken in the pivot shift test and in the “giving way position” and lateral radiographs in stress arthrometer at 30° and 90°. Three-dimensional knee models were constructed using computed tomography. Using biplanar image-matching technique, the external rotational angle and the translation of the center of the both condyles of the femur were analyzed.

Results

The external rotation angle of geometric center axis in the pivot shift test was 16.9° ± 5.6° and 10.9° ± 7.3° (P = 0.004), and in the “giving way position” was 16.1° ± 5.7° and 10.7° ± 6.6° (P = 0.004) in ACL-deficient knees and intact knees, respectively. In the pivot shift test, the medial and the lateral femoral condylar centers of ACL-deficient knees were translated 1.2 ± 5.1 mm anteriorly and 3.9 ± 3.4 mm posteriorly, respectively, and in the “giving way position,” 2.0 ± 3.7 mm anteriorly and 2.9 ± 2.6 mm posteriorly, respectively. In stress arthrometer at 30°, the medial and the lateral femoral condylar center translated 7.1 ± 6.0 and 6.6 ± 4.8 mm posteriorly (n.s.), respectively, and at 90° translated 2.7 ± 3.4 and 2.6 ± 3.5 mm posteriorly (n.s.), respectively.

Conclusion

Rotational instability was evaluable in the pivot shift test and in the “giving way position.” Translation of both condylar centers was similar in stress arthrometry. The image-matching technique is able to quantify dynamic rotational and antero-posterior instabilities with static parameters in ACL-deficient knees.

Level of evidence

III.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3

References

  1. 1.

    Akagi M, Mori S, Nishimura S, Nishimura A, Asano T, Hamanishi C (2005) Variability of extraarticular tibial rotation references for total knee arthroplasty. Clin Orthop Relat Res 436:172–176

  2. 2.

    Asano T, Akagi M, Nakamura T (2005) The functional flexion-extension axis of the knee corresponds to the surgical epicondylar axis: in vivo analysis using a biplanar image-matching technique. J Arthroplasty 20:1060–1067

  3. 3.

    Asano T, Akagi M, Tanaka K, Tamura J, Nakamura T (2001) In vivo three-dimensional knee kinematics using a biplanar image-matching technique. Clin Orthop Relat Res 388:157–166

  4. 4.

    Banks SA, Hodge WA (1996) Accurate measurement of three-dimensional knee replacement kinematics using single-plane fluoroscopy. IEEE Trans Biomed Eng 43:638–649

  5. 5.

    Banks SA, Markovich GD, Hodge WA (1997) In vivo kinematics of cruciate-retaining and -substituting knee arthroplasties. J Arthroplasty 12:297–304

  6. 6.

    Branch TP, Siebold R, Freedberg HI, Jacobs CA (2011) Double-bundle ACL reconstruction demonstrated superior clinical stability to single-bundle ACL reconstruction: a matched-pairs analysis of instrumented tests of tibial anterior translation and internal rotation laxity. Knee Surg Sports Traumatol Arthrosc 19:432–440

  7. 7.

    Colombet P, Robinson J, Christel P, Franceschi JP, Djian P (2007) Using navigation to measure rotation kinematics during ACL reconstruction. Clin Orthop Relat Res 454:59–65

  8. 8.

    Defrate LE, Papannagari R, Gill TJ, Moses JM, Pathare NP, Li G (2006) The 6 degrees of freedom kinematics of the knee after anterior cruciate ligament deficiency: an in vivo imaging analysis. Am J Sports Med 34:1240–1246

  9. 9.

    Dennis DA, Komistek RD, Hoff WA, Gabriel SM (1996) In vivo knee kinematics derived using an inverse perspective technique. Clin Orthop Relat Res 331:107–117

  10. 10.

    Diermann N, Schumacher T, Schanz S, Raschke MJ, Petersen W, Zantop T (2009) Rotational instability of the knee: internal tibial rotation under a simulated pivot shift test. Arch Orthop Trauma Surg 129:353–358

  11. 11.

    Ferretti A, Vadalà A, De Carli A, Argento G, Conteduca F, Severini G (2008) Minimizing internal rotation strength deficit after use of semitendinosus for anterior cruciate ligament reconstruction: a modified harvesting technique. Arthroscopy 24:786–795

  12. 12.

    Galway HR, MacIntosh DL (1980) The lateral pivot shift: a symptom and sign of anterior cruciate ligament insufficiency. Clin Orthop Relat Res 147:45–50

  13. 13.

    Georgoulis AD, Ristanis S, Chouliaras V, Moraiti C, Stergiou N (2007) Tibial rotation is not restored after ACL reconstruction with a hamstring graft. Clin Orthop Relat Res 454:89–94

  14. 14.

    Hofbauer M, Valentin P, Kdolsky R, Ostermann RC, Graf A, Figl M, Aldrian S (2010) Rotational and translational laxity after computer-navigated single- and double-bundle anterior cruciate ligament reconstruction. Knee Surg Sports Traumatol Arthrosc 18:1201–1207

  15. 15.

    Hughston JC, Andrews JR, Cross MJ, Moschi A (1976) Classification of knee ligament instabilities. Part I. The medial compartment and cruciate ligaments. J Bone Joint Surg Am 58:159–172

  16. 16.

    Ishibashi Y, Tsuda E, Fukuda A, Tsukada H, Toh S (2008) Stability evaluation of single-bundle and double-bundle reconstruction during navigated ACL reconstruction. Sports Med Arthrosc 16:77–83

  17. 17.

    Jenny JY (2009) Navigation system measures AP and rotational knee laxity in ACL replacement. Orthopedics 32:31–34

  18. 18.

    Katz JW, Fingeroth RJ (1986) The diagnostic accuracy of ruptures of the anterior cruciate ligament comparing the Lachman test, the anterior drawer sign, and the pivot shift test in acute and chronic knee injuries. Am J Sports Med 14:88–91

  19. 19.

    Kim SJ, Kim HK (1995) Reliability of the anterior drawer test, the pivot shift test, and the Lachman test. Clin Orthop Relat Res 317:237–242

  20. 20.

    Kocher MS, Tucker R, Briggs KK (2005) Relationship between subjective and objective assessment of outcomes after anterior cruciate ligament reconstruction. J Knee Surg 18:73–81

  21. 21.

    Kondo E, Yasuda K, Azuma H, Tanabe Y, Yagi T (2008) Prospective clinical comparisons of anatomic double-bundle versus single-bundle anterior cruciate ligament reconstruction procedures in 328 consecutive patients. Am J Sports Med 36:1675–1687

  22. 22.

    Kurosawa H, Walker PS, Abe S, Garg A, Hunter T (1985) Geometry and motion of the knee for implant and orthotic design. J Biomech 18:487–499

  23. 23.

    Lee HM, Cheng CK, Liau JJ (2009) Correlation between proprioception, muscle strength, knee laxity, and dynamic standing balance in patients with chronic anterior cruciate ligament deficiency. Knee 16:387–391

  24. 24.

    Lee SH, Jung YB, Jung HJ, Song KS, Ko YB (2010) Combined reconstruction for posterolateral rotatory instability with anterior cruciate ligament injuries of the knee. Knee Surg Sports Traumatol Arthrosc 18:1219–1225

  25. 25.

    Lerat JL, Moyen BL, Cladiere F, Besse JL, Abidi H (2000) Knee instability after injury to the anterior cruciate ligament. Quantification of the Lachman test. J Bone Joint Surg Br 82:42–47

  26. 26.

    Li G, Moses JM, Papannagari R, Pathare NP, DeFrate LE, Gill TJ (2006) Anterior cruciate ligament deficiency alters the in vivo motion of the tibiofemoral cartilage contact points in both the anteroposterior and mediolateral directions. J Bone Joint Surg Am 88:1826–1834

  27. 27.

    Lindström M, Felländer-Tsai L, Wredmark T, Henriksson M (2010) Adaptations of gait and muscle activation in chronic ACL deficiency. Knee Surg Sports Traumatol Arthrosc 18:106–114

  28. 28.

    Logan MC, Williams A, Lavelle J, Gedroyc W, Freeman M (2004) What really happens during the Lachman test? A dynamic mri analysis of tibiofemoral motion. Am J Sports Med 32:369–375

  29. 29.

    Markolf KL, Kochan A, Amstutz HC (1984) Measurement of knee stiffness and laxity in patients with documented absence of the anterior cruciate ligament. J Bone Joint Surg Am 66:242–252

  30. 30.

    Markolf KL, Jackson SR, McAllister DR (2010) Relationship between the pivot shift and Lachman tests: a cadaver study. J Bone Joint Surg Am 92:2067–2075

  31. 31.

    Matsumoto H (1990) Mechanism of the pivot shift. J Bone Joint Surg Br 72:816–821

  32. 32.

    Nakajima H, Kondo M, Kurosawa H, Fukubayashi T (1979) Insufficiency of the anterior cruciate ligament. Review of our 118 cases. Arch Orthop Trauma Surg 95:233–240

  33. 33.

    Nishinaka N, Tsutsui H, Mihara K, Suzuki K, Makiuchi D, Kon Y, Wright TW, Moser MW, Gamada K, Sugimoto H, Banks SA (2008) Determination of in vivo glenohumeral translation using fluoroscopy and shape-matching techniques. J Shoulder Elbow Surg 17:319–322

  34. 34.

    Okazaki K, Miura H, Matsuda S, Yasunaga T, Nakashima H, Konishi K, Iwamoto Y, Hashizume M (2007) Assessment of anterolateral rotatory instability in the anterior cruciate ligament-deficient knee using an open magnetic resonance imaging system. Am J Sports Med 35:1091–1097

  35. 35.

    Pinskerova V, Iwaki H, Freeman MA (2000) The shapes and relative movements of the femur and tibia at the knee. Orthopade 29(Suppl 1):S3–S5

  36. 36.

    Ristanis S, Stergiou N, Patras K, Vasiliadis HS, Giakas G, Georgoulis AD (2005) Excessive tibial rotation during high-demand activities is not restored by anterior cruciate ligament reconstruction. Arthroscopy 21:1323–1329

  37. 37.

    Tashiro Y, Okazaki K, Miura H, Matsuda S, Yasunaga T, Hashizume M, Nakanishi Y, Iwamoto Y (2009) Quantitative assessment of rotatory instability after anterior cruciate ligament reconstruction. Am J Sports Med 37:909–916

  38. 38.

    Tashman S, Kolowich P, Collon D, Anderson K, Anderst W (2007) Dynamic function of the ACL-reconstructed knee during running. Clin Orthop Relat Res 454:66–73

  39. 39.

    Torzilli PA, Greenberg RL, Hood RW, Pavlov H, Insall JN (1984) Measurement of anterior-posterior motion of the knee in injured patients using a biomechanical stress technique. J Bone Joint Surg Am 66:1438–1442

  40. 40.

    Tsarouhas A, Iosifidis M, Kotzamitelos D, Spyropoulos G, Tsatalas T, Giakas G (2010) Three-dimensional kinematic and kinetic analysis of knee rotational stability after single- and double-bundle anterior cruciate ligament reconstruction. Arthroscopy 26:885–893

  41. 41.

    Walker SA, Hoff W, Komistek R, Dennis D (1996) “In vivo” Pose estimation of artificial knee implants using computer vision. Biomed Sci Instrum 32:143–150

  42. 42.

    Yagi M, Kuroda R, Nagamune K, Yoshiya S, Kurosaka M (2007) Double-bundle ACL reconstruction can improve rotational stability. Clin Orthop Relat Res 454:100–107

  43. 43.

    Yamaguchi S, Gamada K, Sasho T, Kato H, Sonoda M, Banks SA (2009) In vivo kinematics of anterior cruciate ligament deficient knees during pivot and squat activities. Clin Biomech (Bristol, Avon) 24:71–76

  44. 44.

    Yamazaki J, Muneta T, Ju YJ, Sekiya I (2010) Differences in kinematics of single leg squatting between anterior cruciate ligament-injured patients and healthy controls. Knee Surg Sports Traumatol Arthrosc 18:56–63

Download references

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Correspondence to Shinichiro Nakamura.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Nakamura, S., Kobayashi, M., Asano, T. et al. Image-matching technique can detect rotational and AP instabilities in chronic ACL-deficient knees. Knee Surg Sports Traumatol Arthrosc 19, 69–76 (2011). https://doi.org/10.1007/s00167-011-1524-y

Download citation

Keywords

  • Anterior cruciate ligament
  • Rotational instability
  • Anterior instability
  • Image-matching technique