Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Compressibility effects on the transition to turbulence in a spatially developing plane free shear layer

  • 167 Accesses

  • 1 Citations


The compressibility effects on the transition to turbulence in a spatially developing, compressible plane free shear layer are investigated via direct numerical simulation using a high-order discontinuous spectral element method for three different convective Mach numbers of 0.3, 0.5, and 0.7. The location of the laminar–turbulent transition zone is predicted by the analyses of vorticities, Reynolds stresses, and the turbulent dissipation rate. In the turbulence transition and self-similar turbulence regions, the effects of compressibility on the flow properties, such as the velocity autocorrelation function, integral time scale, momentum thickness, Reynolds stress, and turbulent kinetic energy budget, are investigated. The compressibility effects on the onset and length of the turbulence transition zone are studied based on the analyses of such flow properties. The mean velocity, momentum thickness, and Reynolds stress profiles compare well with published experimental data. Vorticity contours and iso-surface of the second invariant of velocity gradient tensor identify the characteristic of flow structures. The two-point correlation functions of velocity components, the one-dimensional (1D) spanwise energy spectrum, and the balance of the turbulent kinetic energy transport equation validate the domain size and resolution of the adopted grid for turbulence simulation. An increase in the convective Mach number leads to a reduction in the sizes of the largest-scale structures, resulting in a significant decrease in Reynolds stresses and turbulence production. The onset of turbulence transition and the location where the transition completes shift downstream, while the length of the transition zone increases with increasing convective Mach number.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21


  1. 1.

    Atoufi, A., Fathali, M., Lessani, B.: Compressibility effects and turbulent kinetic energy exchange in temporal mixing layers. J. Turbul. 16, 676–703 (2015)

  2. 2.

    Barre, S., Bonnet, J.P.: Detailed experimental study of a highly compressible supersonic turbulent plane mixing layer and comparison with most recent DNS results: towards an accurate description of compressibility effects in supersonic free shear flows. Int. J. Heat Fluid Flow 51, 324–334 (2015)

  3. 3.

    Bernal, L.P.: The coherent structure of turbulent mixing layers. I. Similarity of the primary vortex structure. II. Secondary streamwise vortex structure. Ph.D. Thesis, California Institute of Technology, Pasadena (1981)

  4. 4.

    Birch, S.F., Eggers, J.M.: A critical review of the experimental data for developed free turbulent shear layers. NASA SP 321 (1972)

  5. 5.

    Bogdanoff, D.W.: Compressibility effects in turbulent shear layers. AIAA J. 21, 926–927 (1983)

  6. 6.

    Bradshaw, P.: The effect of initial conditions on the development of a free shear layer. J. Fluid Mech. 26, 225–236 (1966)

  7. 7.

    Brown, G.L., Roshko, A.: On density effects and large structure in turbulent mixing layers. J. Fluid Mech. 64, 775–816 (1974)

  8. 8.

    Clemens, N.T., Mungal, M.G.: Large-scale structure and entrainment in the supersonic mixing layer. J. Fluid Mech. 284, 171–216 (1995)

  9. 9.

    Day, M.J., Reynolds, W.C., Mansour, N.N.: The structure of the compressible reacting mixing layer: insights from linear stability analysis. Phys. Fluids 10, 993–1007 (1998)

  10. 10.

    Elliott, G.S., Samimy, M.: Compressibility effects in free shear layers. Phys. Fluids A 2, 1231–1240 (1990)

  11. 11.

    Foysi, H., Sarkar, S.: The compressible mixing layer: an LES study. Theor. Comput. Fluid Dyn. 24, 565–588 (2010)

  12. 12.

    Freund, J.B., Lele, S.K., Moin, P.: Compressibility effects in a turbulent annular mixing layer. Part 1. Turbulence and growth rate. J. Fluid Mech. 421, 229–267 (2000)

  13. 13.

    Fu, S., Li, Q.: Numerical simulation of compressible mixing layers. Int. J. Heat Fluid Flow 27, 895–901 (2006)

  14. 14.

    Gao, Z., Mashayek, F.: Stochastic model for non-isothermal droplet-laden turbulent flows. AIAA J. 42, 255–260 (2004)

  15. 15.

    Gatski, T.B., Bonnet, J.P.: Compressibility, Turbulence and High Speed Flow. Academic Press, Berlin (2013)

  16. 16.

    Ghiasi, Z., Komperda, J., Li, D., Mashayek, F.: Simulation of supersonic turbulent non-reactive flow in ramp-cavity combustor using a discontinuous spectral element method. AIAA Paper 2016-0617 (2017)

  17. 17.

    Ghiasi, Z., Komperda, J., Li, D., Peyvan, A., Nicholls, D., Mashayek, F.: Modal explicit filtering for large eddy simulation in discontinuous spectral element method. J. Comput. Phys. X 3, 100024 (2019)

  18. 18.

    Goebel, S.G., Dutton, J.C.: Experimental study of compressible turbulent mixing layers. AIAA J. 29, 538–546 (1991)

  19. 19.

    Gortler, H.: Berechnung von aufgaben der freien turbulenz auf grund eines neuen naherungsansatzes. Z. Ange Math Mech 22, 244–54 (1942)

  20. 20.

    Grosch, C.E., Jackson, T.L.: Inviscid spatial stability of a three-dimensional compressible mixing layer. J. Fluid Mech. 231, 35–50 (1991)

  21. 21.

    Gruber, M.R., Messersmith, N.L., Dutton, J.C.: Three-dimensional velocity field in a compressible mixing layer. AIAA J. 31, 2061–2067 (1993)

  22. 22.

    Hall, J.L., Dimotakis, P.E., Rosemann, H.: Experiments in non-reacting compressible shear layers. AIAA J. 31, 2247–2254 (1993)

  23. 23.

    Hirschel, E.H., Cousteix, J., Kordulla, W.: Three-Dimensional Attached Viscous Flow. Springer, Berlin (2013)

  24. 24.

    Ho, C.M., Huang, L.S.: Subharmonics and vortex merging in mixing layers. J. Fluid Mech. 119, 443–473 (1982)

  25. 25.

    Ho, C.M., Huerre, P.: Perturbed free shear layers. Annu. Rev. Fluid Mech. 16, 365–424 (1984)

  26. 26.

    Huang, P.G., Coleman, G.N., Bradshaw, P.: Compressible turbulent channel flows: DNS results and modelling. J. Fluid Mech. 305, 185–218 (1995)

  27. 27.

    Hussaini, M.Y., Voigt, R.G.: Instability and Transition. Springer, New York (1990)

  28. 28.

    Jackson, T.L., Grosch, C.E.: Inviscid spatial stability of a compressible mixing layer. J. Fluid Mech. 208, 609–637 (1989)

  29. 29.

    Jackson, T.L., Grosch, C.E.: Absolute/convective instabilities and the convective mach number in a compressible mixing layer. Phys. Fluids A Fluid Dyn. 2, 949–954 (1990)

  30. 30.

    Jacobs, G.B.: Numerical simulation of two-phase turbulent compressible flows with a multidomain spectral method. Ph.D. Thesis, University of Illinois at Chicago, Chicago (2003)

  31. 31.

    Jacobs, G.B., Kopriva, D.A., Mashayek, F.: A comparison of outflow boundary conditions for the multidomain staggered-grid spectral method. Numer. Heat Transf. Part B 44(3), 225–251 (2003)

  32. 32.

    Jacobs, G.B., Kopriva, D.A., Mashayek, F.: Compressibility effects on the subsonic two-phase flow over a square cylinder. J. Propul. Power 20, 353–359 (2004)

  33. 33.

    Jacobs, G.B., Kopriva, D.A., Mashayek, F.: Validation study of a multidomain spectral code for simulation of turbulent flows. AIAA J. 43, 1256–1264 (2005)

  34. 34.

    Javed, A., Rajan, N.K.S., Chakraborty, D.: Effect of side confining walls on the growth rate of compressible mixing layers. Comput. Fluids 86, 500–509 (2013)

  35. 35.

    Jiménez, J.: Turbulence and vortex dynamics. Notes for the Polytechnic Course on Turbulence (2004)

  36. 36.

    Jiménez, J., Cogollos, M., Bernal, L.P.: A perspective view of the plane mixing layer. J. Fluid Mech. 152, 125–143 (1985)

  37. 37.

    Karimi, M., Girimaji, S.S.: Suppression mechanism of Kelvin–Helmholtz instability in compressible fluid flows. Phys. Rev. E 93, 041102 (2016)

  38. 38.

    Karniadakis, G.E., Sherwin, S.J.: Spectral/hp Element Methods for CFD. Oxford University Press, New York (1999)

  39. 39.

    Kopriva, D.A.: A staggered-grid multidomain spectral method for the compressible Navier–Stokes equations. J. Comput. Phys. 143, 125–158 (1998)

  40. 40.

    Kopriva, D.A., Kolias, J.H.: A conservative staggerd-grid Chebyshev multidomain method for compressible flows. J. Comput. Phys. 125, 244–261 (1996)

  41. 41.

    Laizet, S., Lamballais, E.: Direct Numerical Simulation of a Spatially Evolving Flow from an Asymmetric Wake to a Mixing Layer. Springer, Poitiers (2006)

  42. 42.

    Laizet, S., Lardeau, S., Lamballais, E.: Direct numerical simulation of a mixing layer downstream a thick splitter plate. Phys. Fluids 22, 015104 (2010)

  43. 43.

    Lele, S.K.: Direct numerical simulation of compressible free shear flows. AIAA Paper 89-0374 (1989)

  44. 44.

    Lele, S.K.: Compressibility effect on turbulence. Annu. Rev. Fluid Mech. 26, 211–254 (1994)

  45. 45.

    Lesieur, M.: Understanding coherent vortices through computational fluid dynamics. Theor. Comput. Fluid Dyn. 5, 177–193 (1993)

  46. 46.

    Li, D., Ghiasi, Z., Komperda, J., Mashayek, F.: The effect of inflow mach number on the reattachment in subsonic flow over a backward-facing step. AIAA Paper 2016-2077 (2017)

  47. 47.

    Li, Q.B., Fu, S.: Numerical simulation of high-speed planar mixing layer. Comput. Fluids 32, 1357–1377 (2003)

  48. 48.

    Li, Z., Jaberi, F.A.: Numerical investigations of shock–turbulence interaction in a planar mixing layer. AIAA Paper 2010-112 (2010)

  49. 49.

    Liepmann, H.W., Laufer, J.: Investigation of free turbulent mixing. Technical Report TN 1257, NACA (1946)

  50. 50.

    Loucks, R.B.: An experimental examination of the streamwise velocity in a plane mixing layer using a single hot-wire sensor. Army Research Lab Adelphi MD, Adelphi (1997)

  51. 51.

    Lui, C., Lele, S.: Direct numerical simulation of spatially developing, compressible, turbulent mixing layers. AIAA Paper 2001-291 (2001)

  52. 52.

    Mashayek, F.: Droplet–turbulence interactions in low-mach-number homogeneous shear two-phase flows. J. Fluid Mech. 367, 163–203 (1998)

  53. 53.

    McMullan, W.A., Gao, S., Coats, C.M.: The effect of inflow conditions on the transition to turbulence in large eddy simulations of spatially developing mixing layers. Int. J. Heat Fluid Flow 30, 1054–1066 (2009)

  54. 54.

    Monkewitz, P.A., Heurre, P.: Influence of the velocity ratio on the spatial instability of mixing layers. Phys. Fluids 25, 1137–1143 (1982)

  55. 55.

    Morris, P.J., Giridharan, M.G., Lilley, G.M.: On the turbulent mixing of compressible free shear layer. Proc. R. Soc. Lond. Ser. A 431, 219–243 (1990)

  56. 56.

    Morris, S.C., Foss, J.F.: Turbulent boundary layer to single-stream shear layer: the transition region. J. Fluid Mech. 494, 187–221 (2003)

  57. 57.

    Moser, R.D., Rogers, M.M.: Mixing transition and the cascade of small scales in a plane mixing layer. Phys. Fluids 3, 1128–1134 (1991)

  58. 58.

    Moser, R.D., Rogers, M.M.: The three-dimensional evolution of a plane mixing layer: pairing and transition to turbulence. J. Fluid Mech. 247, 275–320 (1993)

  59. 59.

    Olsen, M.G., Dutton, J.C.: Planar velocity measurements in a weakly compressible mixing layer. J. Fluid Mech. 486, 51–77 (2003)

  60. 60.

    Pantano, C., Sarkar, S.: A study of compressibility effects in the high-speed turbulent shear layer using direct simulation. J. Fluid Mech. 451, 329–371 (2002)

  61. 61.

    Papamoschou, D., Roshko, A.: The compressible turbulent shear layer: an experimental study. J. Fluid Mech. 197, 453–477 (1988)

  62. 62.

    Pickett, L.M., Ghandhi, J.B.: Passive scalar mixing in a planar shear layer with laminar and turbulent inlet conditions. Phys. Fluids 14(3), 985 (2002)

  63. 63.

    Pierrehumbert, R.T., Widnall, S.E.: The two and three dimensional instabilities of a spatially periodic shear layer. J. Fluid Mech. 114, 59–82 (1982)

  64. 64.

    Pirozzoli, S., Bernardini, M., Marié, S., Grasso, F.: Early evolution of the compressible mixing layer issued from two turbulent streams. J. Fluid Mech. 777, 196–218 (2015)

  65. 65.

    Poinsot, T.J., Lele, S.: Boundary-conditions for direct simulations of compressible viscous flows. J. Comput. Phys. 101, 104–129 (1992)

  66. 66.

    Pope, S.B.: Turbulent Flows. Cambridge University Press, Cambridge (2000)

  67. 67.

    Ragab, S.A., Wu, J.L.: Linear instabilities in two dimensional compressible mixing layer. Phys. Fluids A Fluid Dyn. 1, 957–966 (1989)

  68. 68.

    Rogers, M.M., Moser, R.D.: The three-dimensional evolution of a plane mixing layer: the Kelvin–Helmholtz rollup. J. Fluid Mech. 243, 183–226 (1992)

  69. 69.

    Rogers, M.M., Moser, R.D.: Direct simulation of a self-similar turbulent mixing layer. Phys. Fluids 6, 903–923 (1994)

  70. 70.

    Sandham, N.D.: A numerical investigation of the compressible mixing layer. Ph.D. Thesis, Stanford University, Stanford (1989)

  71. 71.

    Sandham, N.D., Reynolds, W.C.: Compressible mixing layer: linear theory and direct simulation. AIAA J. 28, 618–624 (1990)

  72. 72.

    Sandham, N.D., Reynolds, W.C.: Three-dimensional simulations of large eddies in the compressible mixing layer. J. Fluid Mech. 224, 133–158 (1991)

  73. 73.

    Sandham, N.D., Sandberg, R.D.: Direct numerical simulation of the early development of a turbulent mixing layer downstream of a splitter plate. J. Turbul. 10, 1–17 (2009)

  74. 74.

    Sarkar, S.: The pressure-dilatation correlation in compressible flows. Phys. Fluids 4, 2674–2682 (1992)

  75. 75.

    Sarkar, S.: The stabilizing effect of compressibility in turbulent shear flow. J. Fluid Mech. 282, 163–186 (1995)

  76. 76.

    Sarkar, S., Erlebacher, G., Hussaini, M.Y.: Direct simulation of compressible turbulence in a shear flow. Theor. Comput. Fluid Dyn. 2, 291–305 (1991)

  77. 77.

    Sharma, A., Bhaskaran, R., Lele, S.K.: Large-eddy simulation of supersonic, turbulent mixing layers downstream of a splitter plate. AIAA Paper 2011-208 (2011)

  78. 78.

    Shi, X., Chen, J., Bi, W., Shu, C., She, Z.: Numerical simulations of compressible mixing layers with a discontinuous galerkin method. Acta Mech. 27, 318–329 (2011)

  79. 79.

    Shyy, W., Krishnamurty, V.S.: Compressibility effects in modelling complex turbulent flows. Prog. Aerosp. Sci. 33, 587–645 (1997)

  80. 80.

    Smits, A., Dussauge, J.P.: Turbulent Shear Layers in Supersonic Flow. Springer, Berlin (1996)

  81. 81.

    Thompson, K.W.: Time dependent boundary conditions for hyperbolic systems. J. Comput. Phys. 68, 1–24 (1987)

  82. 82.

    Thompson, K.W.: Time dependent boundary conditions for hyperbolic systems 2. J. Comput. Phys. 89, 439–461 (1990)

  83. 83.

    Urban, W.D., Mungal, M.G.: Planar velocity measurements in compressible mixing layers. J. Fluid Mech. 431, 189–222 (2001)

  84. 84.

    Vreman, A.W., Sandham, N.D., Luo, K.H.: Compressible mixing layer growth rate and turbulence characteristics. J. Fluid Mech. 320, 235–258 (1996)

  85. 85.

    Wang, B., Wei, W., Zhang, Y., Zhang, H., Xue, S.: Passive scalar mixing in \({M}_{{\rm c}} < 1\) planar shear layer flows. Comput. Fluids 123, 32–43 (2015)

  86. 86.

    Wang, Y., Tanahashi, M., Miyauchi, T.: Coherent fine scale eddies in turbulence transition of spatially-developing mixing layer. Int. J. Heat Fluid Flow 28, 1280–1290 (2007)

  87. 87.

    Yoder, D.A., DeBonis, J.R., Georgiadis, N.J.: Modeling of turbulent free shear flows. Comput. Fluids 117, 212–232 (2015)

  88. 88.

    Zhang, D., Tan, J., Yao, X.: Direct numerical simulation of spatially developing highly compressible mixing layer: structural evolution and turbulent statistics. Phys. Fluids 31, 036102 (2019)

  89. 89.

    Zhou, Q., He, F., Shen, M.Y.: Direct numerical simulation of a spatially developing compressible plane mixing layer: flow structures and mean flow properties. J. Fluid Mech. 711, 437–468 (2012)

Download references


Part of the computational resources for this study was provided by the ACER at the University of Illinois at Chicago. This research was also in part supported by the Blue Waters sustained-petascale computing project, which is sponsored by the National Science Foundation (Awards OCI-0725070 and ACI-1238993) and the state of Illinois. Blue Waters is a joint effort of the University of Illinois at Urbana-Champaign and its National Center for Supercomputing Applications. The Program Development Company GridPro provided us with troubleshooting support and license to access its meshing software, which was used to create the meshes for the simulations presented in this study.

Author information

Correspondence to Farzad Mashayek.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Communicated by Sergio Pirozzoli.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Li, D., Komperda, J., Ghiasi, Z. et al. Compressibility effects on the transition to turbulence in a spatially developing plane free shear layer. Theor. Comput. Fluid Dyn. 33, 577–602 (2019).

Download citation


  • Direct numerical simulation
  • Transition
  • Compressible flow
  • Plane free shear layer
  • Compressibility effect
  • Spatially developing flow