Advertisement

Instability and nonlinear dynamics of the MJO in a tropical channel model with vertically varying convective adjustment

  • H. Reed OgroskyEmail author
  • Samuel N. Stechmann
  • Scott Hottovy
Original Article

Abstract

In the tropical atmosphere, weather and climate are influenced by dispersive equatorial waves and their coupling with water vapor, deep convection, and rainfall. The dominant mode of variability on intraseasonal time scales is the Madden–Julian Oscillation (MJO), which is still not fully understood. Here we investigate the question: Is the MJO a linearly stable wave or an unstable wave? The linearly stable (i.e., damped) MJO regime, in which case random stochastic forcing provides the source for MJO variability, was previously investigated in a linear version of a model that has a convective adjustment parameterization. Here, to assess the other alternative, nonlinearity is added to the model and allows the study of the linearly unstable MJO regime. Model simulations are performed and evaluated for their ability to generate MJO variability as well as the full spectrum of tropical variability such as convectively coupled equatorial waves (CCEWs). In simulations of unstable growth, nonlinear advection slows the growth, and the wave saturates with reasonable amplitude, structure, speed, and dynamics. In further tests, MJO instability can sometimes excite CCEW variability, but only in a subset of cases. Overall, both the stable and unstable MJOs appear to be reasonable and may arise in different situations due to different environmental conditions.

Keywords

Dispersive equatorial waves Madden–Julian oscillation Stability analysis Nonlinear dynamics 

Notes

Acknowledgements

The research of S.H. is partially supported by the National Science Foundation under Grant No. DMS-1815061.

References

  1. 1.
    Adames, Á.F., Kim, D.: The MJO as a dispersive, convectively coupled moisture wave: theory and observations. J. Atmos. Sci. 73, 913–941 (2016)CrossRefGoogle Scholar
  2. 2.
    Betts, A.K., Miller, M.J.: A new convective adjustment scheme. Part II: Single column tests using GATE wave, BOMEX, ATEX, and arctic airmass data sets. Quart. J. Roy. Meteor. Soc. 112, 693–709 (1986)Google Scholar
  3. 3.
    Chen, S., Stechmann, S.N.: Nonlinear traveling waves for the skeleton of the Madden–Julian oscillation. Commun. Math. Sci. 14, 571–592 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Dias, J., Leroux, S., Tulich, S.N., Kiladis, G.N.: How systematic is organized tropical convection within the MJO? Geophys. Res. Lett. 40, 1420–1425 (2013)CrossRefGoogle Scholar
  5. 5.
    Dias, J., Sakaeda, N., Kiladis, G.N., Kikuchi, K.: Influences of the MJO on the space-time organization of tropical convection. J. Geophys. Res. Atmos. 122, 8012–8032 (2017)CrossRefGoogle Scholar
  6. 6.
    Gill, A.E.: Atmosphere–Ocean Dynamics. p. 662. Academic Press. San Diego (1982)Google Scholar
  7. 7.
    Gottschalck, J., Wheeler, M., Weickmann, K., Vitart, F., Savage, N., Lin, H., Hendon, H., Waliser, D., Sperber, K., Nakagawa, M., Prestrelo, C., Flatau, M., Higgins, W.: A framework for assessing operational Madden–Julian oscillation forecasts. Bull. Am. Meteor. Soc. 91, 1247–1258 (2010)CrossRefGoogle Scholar
  8. 8.
    Hendon, H.H., Salby, M.L.: The life cycle of the Madden–Julian oscillation. J. Atmos. Sci. 51, 2225–2237 (1994)CrossRefGoogle Scholar
  9. 9.
    Hendon, H.H., Wheeler, M., Zhang, C.: Seasonal dependence of the MJO-ENSO relationship. J. Clim. 20, 531–543 (2007)CrossRefGoogle Scholar
  10. 10.
    Hernandez-Duenas, G., Majda, A.J., Smith, L.M., Stechmann, S.N.: Minimal models for precipitating turbulent convection. J. Fluid Mech. 717, 576–611 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Hernandez-Duenas, G., Smith, L.M., Stechmann, S.N.: Stability and instability criteria for idealized precipitating hydrodynamics. J. Atmos. Sci. 72, 2379–2393 (2015)CrossRefGoogle Scholar
  12. 12.
    Hittmeir, S., Klein, R.: Asymptotics for moist deep convection I: refined scalings and self-sustaining updrafts. Theor. Comput. Fluid Dyn. 32, 137–164 (2018)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Holloway, C.E., Neelin, J.D.: Moisture vertical structure, column water vapor, and tropical deep convection. J. Atmos. Sci. 66, 1665–1683 (2009)CrossRefGoogle Scholar
  14. 14.
    Hottovy, S., Stechmann, S.N.: A spatiotemporal stochastic model for tropical precipitation and water vapor dynamics. J. Atmos. Sci. 72, 4721–4738 (2015)CrossRefGoogle Scholar
  15. 15.
    Jones, C.: Occurrence of extreme precipitation events in California and relationships with the Madden–Julian oscillation. J. Clim. 13, 3576–3587 (2000)CrossRefGoogle Scholar
  16. 16.
    Jones, C., Waliser, D.E., Lau, K.M., Stern, W.: The Madden–Julian oscillation and its impact on Northern Hemisphere weather predictability. Mon. Wea. Rev. 132, 1462–1471 (2004)CrossRefGoogle Scholar
  17. 17.
    Khouider, B., Majda, A.J.: A simple multicloud parameterization for convectively coupled tropical waves. Part I: linear analysis. J. Atmos. Sci. 63, 1308–1323 (2006)CrossRefGoogle Scholar
  18. 18.
    Khouider, B., St-Cyr, A., Majda, A.J., Tribbia, J.: The MJO and convectively coupled waves in a coarse-resolution GCM with a simple multi-cloud parametrization. J. Atmos. Sci. 68, 240–264 (2011)CrossRefGoogle Scholar
  19. 19.
    Kikuchi, K., Kiladis, G.N., Dias, J., Nasuno, T.: Convectively coupled equatorial waves within the MJO during CINDY/DYNAMO: slow Kelvin waves as building blocks. Dyn. Clim. (2017).  https://doi.org/10.1007/s00382-017-3869-5
  20. 20.
    Kiladis, G.N., Straub, K.H., Haertel, P.T.: Zonal and vertical structure of the Madden–Julian oscillation. J. Atmos. Sci. 62, 2790–2809 (2005)CrossRefGoogle Scholar
  21. 21.
    Kiladis, G.N., Wheeler, M.C., Haertel, P.T., Straub, K.H., Roundy, P.E.: Convectively coupled equatorial waves. Rev. Geophys. 47, 2003 (2009)CrossRefGoogle Scholar
  22. 22.
    Kim, D., Sperber, K., Stern, W., Waliser, D., Kang, I.-S., Maloney, E., Wang, W., Weickmann, K., Benedict, J., Khairoutdinow, M., Lee, M.-I., Neale, R., Suarez, M., Thayer-Calder, K., Zhang, G.: Application of MJO simulation diagnostics to climate models. J. Clim. 22, 6413–6436 (2009)CrossRefGoogle Scholar
  23. 23.
    Klein, R., Majda, A.J.: Systematic multiscale models for deep convection on mesoscales. Theor. Comput. Fluid Dyn. 20, 525–551 (2006)CrossRefGoogle Scholar
  24. 24.
    Lau, W.K.M., Waliser, D.E.: Intraseasonal Variability in the Atmosphere–Ocean Climate System. Springer, Berlin (2012)CrossRefGoogle Scholar
  25. 25.
    Liebmann, B., Hendon, H.H., Glick, J.D.: The relationship between tropical cyclones of the Western Pacific and Indian oceans and the Madden–Julian oscillation. J. Meteor. Soc. Jpn. 72, 401–412 (1994).  https://doi.org/10.2151/jmsj1965.72.3_401 CrossRefGoogle Scholar
  26. 26.
    Lin, J.-L., Kiladis, G.N., Mapes, B.E., Weickmann, K.M., Sperber, K.R., Lin, W., Wheeler, M.C., Schubert, S.D., Del Genio, A., Donner, L.J., Emori, S., Gueremy, J.-F., Hourdin, F., Rasch, P.J., Roeckner, E., Scinocca, J.F.: Tropical intraseasonal variability in 14 IPCC AR4 climate models. Part I: convective signals. J. Clim. 19, 2665–2690 (2006)CrossRefGoogle Scholar
  27. 27.
    Madden, R.A., Julian, P.R.: Detection of a 40–50 day oscillation in the zonal wind in the tropical Pacific. J. Atmos. Sci. 28, 702–708 (1971)CrossRefGoogle Scholar
  28. 28.
    Madden, R.A., Julian, P.R.: Description of global-scale circulation cells in the tropics with a 40–50 day period. J. Atmos. Sci. 29, 1109–1123 (1972)CrossRefGoogle Scholar
  29. 29.
    Madden, R.A., Julian, P.R.: Observations of the 40–50-day tropical oscillation: a review. Mon. Weather. Rev. 122, 814–837 (1994)CrossRefGoogle Scholar
  30. 30.
    Majda, A.J.: Introduction to PDEs and Waves for the Atmosphere and Ocean. In: Courant Lecture Notes in Mathematics (American Mathematical Society, Providence, RI) vol. 9 (2003)Google Scholar
  31. 31.
    Majda, A.J., Stechmann, S.N.: The skeleton of tropical intraseasonal oscillations. Proc. Natl. Acad. Sci. 106, 8417–8422 (2009)CrossRefGoogle Scholar
  32. 32.
    Majda, A.J., Stechmann, S.N.: Nonlinear dynamics and regional variations in the MJO skeleton. J. Atmos. Sci. 68, 3053–3071 (2011)CrossRefGoogle Scholar
  33. 33.
    Maloney, E.D., Hartmann, D.L.: Modulation of the Eastern North Pacific hurricanes by the Madden–Julian oscillation. J. Clim. 13, 1451–1460 (2000)CrossRefGoogle Scholar
  34. 34.
    Neelin, J.D., Yu, J.-Y.: Modes of tropical variability under convective adjustment and the Madden–Julian oscillation. Part 1: analytical theory. J. Atmos. Sci. 51, 1876–1894 (1994)CrossRefGoogle Scholar
  35. 35.
    Peixoto, J.P., Oort, A.H.: Physics of Climate. American Institute of Physics, New York (1992)CrossRefGoogle Scholar
  36. 36.
    Raymond, D.J., Fuchs, Ž.: Moisture modes and the Madden–Julian oscillation. J. Clim. 22, 3031–3046 (2009)CrossRefGoogle Scholar
  37. 37.
    Raymond, D.J., Herman, M.J.: Convective quasi-equilibrium reconsidered. J. Adv. Model. Earth Syst. 3, 2011MS000079 (2011)Google Scholar
  38. 38.
    Rui, H., Wang, B.: Development characteristics and dynamic structure of tropical intraseasonal convection anomalies. J. Atmos. Sci. 47, 357–379 (1990)CrossRefGoogle Scholar
  39. 39.
    Salby, M.L., Garcia, R.R., Hendon, H.H.: Planetary-scale circulations in the presence of climatological and wave-induced heating. J. Atmos. Sci. 51, 2344–2367 (1994)CrossRefGoogle Scholar
  40. 40.
    Sobel, A., Maloney, E.: Moisture modes and the eastward propagation of the MJO. J. Atmos. Sci. 70, 187–192 (2013)CrossRefGoogle Scholar
  41. 41.
    Sperber, K.R., Kim, D.: Simplified metrics for the identification of the Madden–Julian oscillation in models. Atmos. Sci. Lett. 13, 187–193 (2012)CrossRefGoogle Scholar
  42. 42.
    Stechmann, S.N., Hottovy, S.: Unified spectrum of tropical rainfall and waves in a simple stochastic model. Geophys. Res. Lett. 44, 10713–10724 (2017)CrossRefGoogle Scholar
  43. 43.
    Stechmann, S.N., Majda, A.J.: Identifying the skeleton of the Madden–Julian oscillation in observational data. Mon. Weather Rev. 143, 395–416 (2015)CrossRefGoogle Scholar
  44. 44.
    Stechmann, S.N., Majda, A.J., Khouider, B.: Nonlinear dynamics of hydrostatic internal gravity waves. Theor. Comput. Fluid Dyn. 22, 407–432 (2008)CrossRefzbMATHGoogle Scholar
  45. 45.
    Stechmann, S.N., Ogrosky, H.R.: The Walker circulation, diabatic heating, and outgoing longwave radiation. Geophys. Res. Lett. 41, 9097–9105 (2014)CrossRefGoogle Scholar
  46. 46.
    Takayabu, Y.N.: Large scale cloud disturbances associated with equatorial waves. Part I: spectral features of the cloud disturbances. J. Meteor. Soc. Jpn. 72, 433–449 (1994)CrossRefGoogle Scholar
  47. 47.
    Thual, S., Majda, A.J.: A suite of skeleton models for the MJO with refined vertical structure. Math. Clim. Weather Forcast. 1, 2353–6438 (2015)zbMATHGoogle Scholar
  48. 48.
    Thual, S., Majda, A.J., Stechmann, S.N.: A stochastic skeleton model for the MJO. J. Atmos. Sci. 71, 697–715 (2014)CrossRefGoogle Scholar
  49. 49.
    Waliser, D., Sperber, K., Hendon, H., Kim, D., Maloney, E., Wheeler, M., Weickmann, K., Zhang, C., Donner, L., Gottschalck, J., Higgins, W., Kang, I.-S., Legler, D., Moncrieff, M., Schubert, S., Stern, W., Vitart, F., Wang, B., Wang, W., Woolnough, S.: MJO simulation diagnostics. J. Clim. 22, 3006–3030 (2009)CrossRefGoogle Scholar
  50. 50.
    Wang, B., Liu, F., Chen, G.: A trio-interaction theory for Madden–Julian oscillation. Geosci. Lett. 3, 34 (2016).  https://doi.org/10.1186/s40562-016-0066-z CrossRefGoogle Scholar
  51. 51.
    Wang, B., Rui, H.: Dynamics of the coupled moist Kelvin–Rossby wave on an equatorial beta-plane. J. Atmos. Sci. 47, 397–413 (1990)CrossRefGoogle Scholar
  52. 52.
    Wei, Y., Liu, F., Mu, M., Ren, H.-L.: Planetary scale selection of the Madden–Julian Oscillation in an air-sea coupled dynamic moisture model. Dyn. Clim. (2017).  https://doi.org/10.1007/s00382-017-3816-5
  53. 53.
    Wheeler, M., Kiladis, G.N.: Convectively coupled equatorial waves: analysis of clouds and temperature in the wavenumber-frequency domain. J. Atmos. Sci. 56, 374–399 (1999)CrossRefGoogle Scholar
  54. 54.
    Zhang, C.: Madden–Julian oscillation. Rev. Geophys. 43, 2003 (2005)Google Scholar
  55. 55.
    Zhang, C., Gottschalck, J., Maloney, E.D., Moncrieff, M.W., Vitart, F., Waliser, D.E., Wang, B., Wheeler, M.C.: Cracking the MJO nut. Geophys. Res. Lett. 40, 1223–1230 (2013)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Mathematics and Applied MathematicsVirginia Commonwealth UniversityRichmondUSA
  2. 2.Department of MathematicsUniversity of Wisconsin-MadisonMadisonUSA
  3. 3.Department of Atmospheric and Oceanic SciencesUniversity of Wisconsin-MadisonMadisonUSA
  4. 4.Department of MathematicsUnited States Naval AcademyAnnapolisUSA

Personalised recommendations