Theoretical and Computational Fluid Dynamics

, Volume 33, Issue 1, pp 21–35 | Cite as

Waves in strong centrifugal field: dissipative gas

  • S. V. Bogovalov
  • V. A. Kislov
  • I. V. TroninEmail author
Original Article


In the fast rotating gas (with the velocity typical for Iguassu gas centrifuge), three families of linear waves exist with different polarizations and law of dispersion. The energy of the waves is basically concentrated at the axis of rotation in the rarefied region. Therefore, these waves decay on the distance comparable with the wavelength. There is only one type of waves propagating strictly along the axis of rotation with the law of dispersion similar to ordinary acoustic waves. These waves are interested for the physics of gas centrifuges. The energy density of these waves concentrates at the wall of the rotor. These waves have weak damping due to the molecular viscosity and heat conductivity. The damping coefficient is determined for this type of waves by numerical calculations. Analytical approximations for the damping coefficient are defined as well. At the parameters typical for the Iguassu centrifuge, the damping is defined by interaction of the waves with the rotor wall.


High-speed flow Gas dynamics General fluid mechanics Rotating flows Waves in rotating fluids 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



The present work was supported by Russian science foundation, project N 18-19-00447.


  1. 1.
    Abramov, V., Bogovalov, S., Borisevich, V., Borman, V., Kislov, V., Tronin, I., Tronin, V., Yupatov, S.: Verification of software codes for simulation of unsteady flows in a gas centrifuge. Comput. Math. Math. Phys. 53(6), 789–797 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Baines, P.G.: Forced oscillations of an enclosed rotating fluid. J. Fluid Mech. 30(3), 533–546 (1967)CrossRefzbMATHGoogle Scholar
  3. 3.
    Bogovalov, S., Borisevich, V., Borman, V., Kislov, V., Tronin, I., Tronin, V.: Verification of numerical codes for modeling of the flow and isotope separation in gas centrifuges. Comput. Fluids 86, 177–184 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Bogovalov, S., Borman, V.: Separative power of an optimised concurrent gas centrifuge. Nucl. Eng. Technol. 48(3), 719–726 (2016)CrossRefGoogle Scholar
  5. 5.
    Bogovalov, S., Kislov, V., Tronin, I.: Waves in strong centrifugal fields: dissipationless gas. Theor. Comput. Fluid Dyn. 29(1–2), 111–125 (2015)CrossRefGoogle Scholar
  6. 6.
    Bogovalov, S., Kislov, V., Tronin, I.: Impact of the pulsed braking force on the axial circulation in a gas centrifuge. Appl. Math. Comput. 272, 670–675 (2016)Google Scholar
  7. 7.
    Bogovalov, S., Kislov, V., Tronin, I.: Impact of the waves on the product flux of the Iguasu gas centrifuge. In: AIP Conference Proceedings, vol. 1738 (2016)Google Scholar
  8. 8.
    Borman, V., Bogovalov, S., Borisevich, V., Tronin, I., Tronin, V.: The computer simulation of 3d gas dynamics in a gas centrifuge. J. Phys. Conf. Ser. 751(1), 012017 (2016)CrossRefGoogle Scholar
  9. 9.
    Doneddu, F., Roblin, P., Wood, H.: Optimization studies for gas centrifuges. Sep. Sci. Technol. 35(8), 1207–1221 (2000)CrossRefGoogle Scholar
  10. 10.
    Duguet, Y., Scott, J.F., Le Penven, L.: Instability inside a rotating gas cylinder subject to axial periodic strain. Phys. Fluids 17, 114,103 (2005)CrossRefzbMATHGoogle Scholar
  11. 11.
    Glaser, A.: Characteristics of the gas centrifuge for uranium enrichment and their relevance for nuclear weapon proliferation. Sci. Glob. Secur. 16(12), 1–26 (2008)Google Scholar
  12. 12.
    Greenspan, H.P.: The Theory of Rotating Fluids. Cambridge University Press, New York (1968)zbMATHGoogle Scholar
  13. 13.
    Kobine, J.J.: Inertial wave dynamics in a rotating and precessing cylinder. J. Fluid Mech. 303, 233–252 (1995)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Landau, L.D., Lifshitz, E.M.: Fluid Mechanics. Butterworth-Heinemann, Oxford (1987)Google Scholar
  15. 15.
    Rayleigh, L.: On the circulation of air observed in kundt’s tubes, and on some allied acoustical problems. Philos. Trans. R. Soc. Lond. Ser. A 175, 1–21 (1884)CrossRefzbMATHGoogle Scholar
  16. 16.
    Rayleigh, L.: The Theory of Sound. MacMillan, London (1896)zbMATHGoogle Scholar
  17. 17.
    Von Halle, E., Wood, H., Lowry, R.: The effect of vacuum core boundary conditions on separation in the gas centrifuge. Nucl. Technol. 62, 325–334 (1983)CrossRefGoogle Scholar
  18. 18.
    Wood, H., Morton, J.: Onsager’s pancake approximation for the fluid dynamics of a gas centrifuge. J. Fluid Mech. 101(1), 1–31 (1980)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • S. V. Bogovalov
    • 1
  • V. A. Kislov
    • 1
  • I. V. Tronin
    • 1
    Email author
  1. 1.National Research Nuclear University “MEPhI”MoscowRussia

Personalised recommendations