Advertisement

Theoretical and Computational Fluid Dynamics

, Volume 32, Issue 4, pp 451–473 | Cite as

A combined analytical and numerical analysis of the flow-acoustic coupling in a cavity-pipe system

  • Mikael A. Langthjem
  • Masami Nakano
Original Article
  • 71 Downloads

Abstract

The generation of sound by flow through a closed, cylindrical cavity (expansion chamber) accommodated with a long tailpipe is investigated analytically and numerically. The sound generation is due to self-sustained flow oscillations in the cavity. These oscillations may, in turn, generate standing (resonant) acoustic waves in the tailpipe. The main interest of the paper is in the interaction between these two sound sources. An analytical, approximate solution of the acoustic part of the problem is obtained via the method of matched asymptotic expansions. The sound-generating flow is represented by a discrete vortex method, based on axisymmetric vortex rings. It is demonstrated through numerical examples that inclusion of acoustic feedback from the tailpipe is essential for a good representation of the sound characteristics.

Keywords

Aeroacoustics Vortex sound Flow–sound interaction Matched asymptotic expansions Self-sustained flow oscillations Discrete vortex method 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

References

  1. 1.
    Abramowitz, M., Stegun, I.A.: Handbook of Mathematical Functions. Dover Publications, New York (1964)zbMATHGoogle Scholar
  2. 2.
    Chanaud, R.C., Powell, A.: Some experiments concerning the hole and ring tone. J. Acoust. Soc. Am. 37, 902–911 (1965)CrossRefGoogle Scholar
  3. 3.
    Cottet, G.-H., Koumoutsakos, P.D.: Vortex Methods: Theory and Practice. Cambridge University Press, Cambridge (2000)CrossRefzbMATHGoogle Scholar
  4. 4.
    Crighton, D.G.: The jet edge-tone feedback cycle; linear theory for the operating stages. J. Fluid Mech. 234, 361–391 (1992)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Crighton, D.G., Dowling, A.P., Ffowcs Williams, J.E., Heckl, M., Leppington, F.G.: Modern Methods in Analytical Acoustics. Springer, London (1992)CrossRefGoogle Scholar
  6. 6.
    Crow, S.C.: Aerodynamic sound emission as a singular perturbation problem. Stud. Appl. Math. 49, 21–44 (1970)CrossRefzbMATHGoogle Scholar
  7. 7.
    Dai, X., Jing, X., Sun, X.: Flow-excited acoustic resonance of a Helmholtz resonator: discrete vortex model compared to experiments. Phys. Fluids 27, 057102-1-24 (2015)Google Scholar
  8. 8.
    Davies, P.O.A.L.: Flow-acoustic coupling in ducts. J. Sound Vib. 77, 191–209 (1981)CrossRefGoogle Scholar
  9. 9.
    Davies, P.O.A.L.: Aeroacoustics and time varying systems. J. Sound Vib. 190, 345–362 (1996)CrossRefGoogle Scholar
  10. 10.
    Dequand, S., Hulshoff, S.J., Hirschberg, A.: Self-sustained oscillations in a closed side branch system. J. Sound Vib. 265, 359–386 (2003)CrossRefGoogle Scholar
  11. 11.
    Dupère, I.D.J., Dowling, A.P.: Absorption of sound near abrupt area expansions. AIAA J. 38, 193–202 (2000)CrossRefGoogle Scholar
  12. 12.
    Dupère, I.D.J., Dowling, A.P.: The absorption of sound near abrupt axisymmetric area expansions. J. Sound Vib. 239, 709–730 (2001)CrossRefGoogle Scholar
  13. 13.
    Eldredge, J.D., Colonius, T., Leonard, A.: A vortex particle method for two-dimensional compressible flow. J. Comput. Phys. 179, 371–399 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    El-Sharkawy, A.I., Nayfeh, A.H.: Effect of an expansion chamber on the propagation of sound in circular ducts. J. Acoust. Soc. Am. 63, 667–674 (1978)CrossRefGoogle Scholar
  15. 15.
    English, E.J., Holland, K.R.: Aeroacoustic sound generation in simple expansion chambers. J. Acoust. Soc. Am. 128, 2589–2595 (2010)CrossRefGoogle Scholar
  16. 16.
    Ffowcs Williams, J.E.: Hydrodynamic noise. Ann. Rev. Fluid Mech. 1, 197–222 (1969)CrossRefGoogle Scholar
  17. 17.
    Ghoniem, A.F., Chorin, A.J., Oppenheim, A.K.: Numerical modelling of turbulent flow in a combustion tunnel. Phil. Trans. R. Soc. Lond. A 304, 303–325 (1982)CrossRefzbMATHGoogle Scholar
  18. 18.
    Helmholtz, H.L.F.: On the Sensations of Tone. Dover Publications, New York (1954)Google Scholar
  19. 19.
    Howe, M.S.: Contributions to the theory of aerodynamic sound, with applications to excess jet noise and the theory of the flute. J. Fluid Mech. 71, 625–673 (1975)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Howe, M.S.: Edge, cavity and aperture tones at very low Mach numbers. J. Fluid Mech. 330, 61–84 (1997)CrossRefzbMATHGoogle Scholar
  21. 21.
    Howe, M.S.: Acoustics of Fluid–Structure Interactions. Cambridge University Press, Cambridge (1998)CrossRefzbMATHGoogle Scholar
  22. 22.
    Howe, M.S.: Theory of Vortex Sound. Cambridge University Press, Cambridge (2003)zbMATHGoogle Scholar
  23. 23.
    Howe, M.S.: Hydrodynamics and Sound. Cambridge University Press, Cambridge (2007)Google Scholar
  24. 24.
    Jeans, Sir James: Science & Music. Dover Publications, New York (1968)Google Scholar
  25. 25.
    Jing, X., Sun, X.: Sound-excited flow and acoustic nonlinearity at an orifice. Phys. Fluids 14, 268–276 (2002)CrossRefzbMATHGoogle Scholar
  26. 26.
    Jones, D.S.: The Theory of Generalised Functions. Cambridge University Press, Cambridge (1982)CrossRefzbMATHGoogle Scholar
  27. 27.
    Karal, F.C.: The analogous acoustical impedance for discontinuities and constrictions of circular cross section. J. Acoust. Soc. Am. 25, 327–334 (1953)MathSciNetCrossRefGoogle Scholar
  28. 28.
    Kevorkian, J., Cole, J.D.: Perturbation Methods in Applied Mathematics. Springer, New York (1981)CrossRefzbMATHGoogle Scholar
  29. 29.
    Lamb, H.: Hydrodynamics. Cambridge University Press, Cambridge (1993)zbMATHGoogle Scholar
  30. 30.
    Lamb, H.: The Dynamical Theory of Sound. Dover Publications, New York (2004)zbMATHGoogle Scholar
  31. 31.
    Langthjem, M.A., Nakano, M.: A numerical simulation of the hole-tone feedback cycle based on an axisymmetric discrete vortex method and Curle’s equation. J. Sound Vib. 288, 133–176 (2005)CrossRefzbMATHGoogle Scholar
  32. 32.
    Langthjem, M.A., Nakano, M.: Numerical study of the hole-tone feedback cycle based on an axisymmetric formulation. Fluid Dyn. Res. 42, 015008(1-26) (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  33. 33.
    Langthjem, M.A., Nakano, M.: A numerical study of the hole-tone phenomenon subjected to non-axisymmetric shape perturbations of the jet nozzle. Theor. Comput. Fluid Dyn. 29, 127–153 (2015)CrossRefGoogle Scholar
  34. 34.
    Lesser, M.B., Lewis, J.A.: Applications of matched asymptotic expansion methods to acoustics. I. The Webster horn equation and the stepped duct. J. Acoust. Soc. Am. 51, 1664–1669 (1972)CrossRefzbMATHGoogle Scholar
  35. 35.
    Lesser, M.B., Lewis, J.A.: Applications of matched asymptotic expansion methods to acoustics. II. The open-ended duct. J. Acoust. Soc. Am. 52, 1406–1410 (1972)CrossRefzbMATHGoogle Scholar
  36. 36.
    Levin, H., Schwinger, J.: On the radiation of sound from an unflanged circular pipe. Phys. Rev. 73, 383–406 (1948)MathSciNetCrossRefzbMATHGoogle Scholar
  37. 37.
    Lighthill, M.J.: On sound generated aerodynamically. I. General theory. Proc. R. Soc. A 211, 564–587 (1952)MathSciNetCrossRefzbMATHGoogle Scholar
  38. 38.
    Majda, A.J., Bertozzi, A.L.: Vorticity and Incompressible Flow. Cambridge University Press, Cambridge (2002)zbMATHGoogle Scholar
  39. 39.
    Matsuura, K., Nakano, M.: A throttling mechanism sustaining a hole-tone feedback system at very low Mach numbers. J. Fluid Mech. 710, 569–605 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  40. 40.
    Miles, J.: The reflection of sound due to a change in cross section of a circular tube. J. Acoust. Soc. Am. 16, 14–19 (1944)MathSciNetCrossRefGoogle Scholar
  41. 41.
    Moore, D.W.: Finite amplitude waves on aircraft trailing vortices. Aeronaut. Q. 23, 307–314 (1972)Google Scholar
  42. 42.
    Morse, P.M., Feshbach, H.: Methods of Theoretical Physics I & II. Feshbach Publishing, Minneapolis (2004)zbMATHGoogle Scholar
  43. 43.
    Morse, P.M., Ingard, K.U.: Theoretical Acoustics. Princeton University Press, Princeton (1986)Google Scholar
  44. 44.
    Naudascher, E., Rockwell, D.: Flow-Induced Vibrations. Dover Publications, New York (2005)Google Scholar
  45. 45.
    Nayfeh, A.H.: Introduction to Perturbation Methods. Wiley, New York (1993)Google Scholar
  46. 46.
    Nitsche, M., Krasny, R.: A numerical study of vortex ring formation at the edge of a circular tube. J. Fluid Mech. 276, 139–161 (1994)MathSciNetCrossRefzbMATHGoogle Scholar
  47. 47.
    Peters, M.C.A.M., Hirschberg, A.: Acoustically induced periodic vortex shedding at sharp edged open channel ends: simple vortex models. J. Sound Vib. 161, 281–299 (1993)CrossRefzbMATHGoogle Scholar
  48. 48.
    Pikovsky, A., Rosenblum, M., Kurths, J.: Synchronization: A Universal Concept in Nonlinear Sciences. Cambridge University Press, Cambridge (2001)CrossRefzbMATHGoogle Scholar
  49. 49.
    Powell, A.: Theory of vortex sound. J. Acoust. Soc. Am. 36, 177–195 (1964)MathSciNetCrossRefGoogle Scholar
  50. 50.
    Rayleigh, Lord: The Theory of Sound, vol. II. Dover Publications, New York (1945)zbMATHGoogle Scholar
  51. 51.
    Rockwell, D., Naudascher, E.: Self-sustained oscillations of impinging free shear layers. Ann. Rev. Fluid Mech. 11, 67–94 (1979)CrossRefGoogle Scholar
  52. 52.
    Rosenhead, L.: The spread of vorticity in the wake behind a cylinder. Proc. R. Soc. Lond. A 127, 590–612 (1930)CrossRefzbMATHGoogle Scholar
  53. 53.
    Tam, C.K.W., Ahuja, K.K.: Theoretical model of discrete tone generation by impinging jets. J. Fluid Mech. 214, 67–87 (1990)MathSciNetCrossRefGoogle Scholar
  54. 54.
    Ting, L., Keller, J.B.: Radiation from the open end of a cylindrical or conical pipe and scattering from the end of a rod or a slab. J. Acoust. Soc. Am. 61, 1438–1444 (1977)CrossRefzbMATHGoogle Scholar
  55. 55.
    Thompson, M.C., Hourigan, K., Welsh, M.C.: Acoustic sources in a tripped flow past a resonator tube. AIAA J. 30, 1484–1491 (1992)CrossRefGoogle Scholar
  56. 56.
    Van Dyke, M.: Perturbation Methods in Fluid Mechanics. The Parabolic Press, Stanford (1975)zbMATHGoogle Scholar
  57. 57.
    Ziada, S., Lafon, P.: Flow-excited acoustic resonance excitation: mechanism, design guidelines, and counter measures. Appl. Mech. Rev. 66, 010802-(1-22) (2014)Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Faculty of EngineeringYamagata UniversityYonezawa-shiJapan
  2. 2.Institute of Fluid ScienceTohoku UniversitySendai-shiJapan

Personalised recommendations