Advertisement

Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Convectively coupled wave–environment interactions

  • 220 Accesses

  • 12 Citations

Abstract

In the tropical atmosphere, waves can couple with water vapor and convection to form large-scale coherent structures called convectively coupled waves (CCWs). The effects of water vapor and convection lead to CCW–mean flow interactions that are different from traditional wave–mean flow interactions in many ways. CCW–mean flow interactions are studied here in two types of models: a multiscale model that represents CCW structures in two spatial dimensions directly above the Earth’s equator, and an amplitude model in the form of ordinary differential equations for the CCW and mean flow amplitudes. The amplitude equations are shown to capture the qualitative behavior of the spatially resolved model, including nonlinear oscillations and a Hopf bifurcation as the climatological background wind is varied. Furthermore, an even simpler set of amplitude equations can also capture some of the essential oscillatory behavior, and it is shown to be equivalent to the Duffing oscillator. The basic interaction mechanisms are that the mean flow’s vertical shear determines the preferred propagation direction of the CCW, and the CCWs can drive changes in the mean shear through convective momentum transport, with energy transfer that is sometimes upscale and sometimes downscale. In addition to CCW–mean flow interactions, also discussed are CCW–water vapor interactions, which form the basis of the Madden–Julian Oscillation (MJO) skeleton model of the first two authors. The key parameter of the MJO skeleton model is estimated theoretically and is in agreement with previously conjectured values.

This is a preview of subscription content, log in to check access.

References

  1. 1

    Andrews D.G., McIntyre M.E.: An exact theory of nonlinear waves on a Lagrangian-mean flow. J. Fluid Mech. 89(4), 609–646 (1978)

  2. 2

    Baldwin M., Gray L., Dunkerton T., Hamilton K., Haynes P., Randel W., Holton J., Alexander M., Hirota I., Horinouchi T., Jones D., Kinnersly J., Marquardt C., Sato K., Takahashi M.: The quasi-biennial oscillation. Rev. Geophys. 39(2), 179–229 (2001)

  3. 3

    Barnes G., Sieckman K.: The environment of fast-and slow-moving tropical mesoscale convective cloud lines. Mon. Weather Rev. 112(9), 1782–1794 (1984)

  4. 4

    Benedict J., Randall D.: Structure of the Madden-Julian oscillation in the Superparameterized CAM. J. Atmos. Sci. 66(11), 3277–3296 (2009)

  5. 5

    Biello J.A., Majda A.J.: A new multiscale model for the Madden–Julian oscillation. J. Atmos. Sci. 62, 1694–1721 (2005)

  6. 6

    Bourlioux A., Majda A.J.: Theoretical and numerical structure of unstable detonations. Philos. Trans. R. Soc. London A 350, 29–68 (1995)

  7. 7

    Bühler O.: Waves and Mean Flows. Cambridge University Press, Cambridge (2009)

  8. 8

    Craik A.D.D.: Wave Interactions and Fluid Flows. Cambridge Univ Press, Cambridge (1985)

  9. 9

    Dunkerton T.J., Crum F.X.: Eastward propagating ∼2- to 15-day equatorial convection and its relation to the tropical intraseasonal oscillation. J. Geophys. Res. 100(D12), 25781–25790 (1995)

  10. 10

    Grabowski W.W., Moncrieff M.W.: Large-scale organization of tropical convection in two-dimensional explicit numerical simulations. Q. J. R. Meteorol. Soc. 127, 445–468 (2001)

  11. 11

    Guckenheimer J., Mahalov A.: Resonant triad interactions in symmetric systems. Physica D: Nonlinear Phenom. 54(4), 267–310 (1992)

  12. 12

    Hendon H.H., Liebmann B.: Organization of convection within the Madden–Julian oscillation. J. Geophys. Res. 99, 8073–8084 (1994). doi:10.1029/94JD00045

  13. 13

    Houze R.A. Jr: Observed structure of mesoscale convective systems and implications for large-scale heating. Q. J. R. Meteorol. Soc. 115(487), 425–461 (1989)

  14. 14

    Houze, Jr., R.A.: Mesoscale convective systems. Rev. Geophys. 42:G4003+ (2004). doi:10.1029/2004RG000150

  15. 15

    Johnson R.H., Aves S.L., Ciesielski P.E., Keenan T.D.: Organization of oceanic convection during the onset of the 1998 East Asian summer monsoon. Mon. Weather Rev. 133(1), 131–148 (2005)

  16. 16

    Khouider B., Han Y., Majda A.J., Stechmann S.N.: Multiscale waves in an MJO background and convective momentum transport feedback. J. Atmos. Sci. 69, 915–933 (2012)

  17. 17

    Khouider B., Majda A.J.: A simple multicloud parameterization for convectively coupled tropical waves. Part I: Linear analysis. J. Atmos. Sci. 63, 1308–1323 (2006)

  18. 18

    Khouider B., Majda A.J.: Multicloud models for organized tropical convection: enhanced congestus heating. J. Atmos. Sci. 65, 895–914 (2008)

  19. 19

    Khouider B., St-Cyr A., Majda A.J., Tribbia J.: The MJO and convectively coupled waves in a coarse resolution GCM with a simple multicloud parameterization. J. Atmos. Sci. 68, 240–264 (2011)

  20. 20

    Kiladis G.N., Straub K.H., Haertel P.T.: Zonal and vertical structure of the Madden–Julian oscillation. J. Atmos. Sci. 62, 2790–2809 (2005)

  21. 21

    Kiladis G.N., Wheeler M.C., Haertel P.T., Straub K.H., Roundy P.E.: Convectively coupled equatorial waves. Rev. Geophys. 47, RG2003 (2009). doi:10.1029/2008RG000266

  22. 22

    Kim D., Sperber K., Stern W., Waliser D., Kang I.S., Maloney E., Wang W., Weickmann K., Benedict J., Khairoutdinov M. et al.: Application of MJO simulation diagnostics to climate models. J. Clim. 22(23), 6413–6436 (2009)

  23. 23

    Lau, W.K.M., Waliser, D.E. (eds.): Intraseasonal Variability in the Atmosphere–Ocean Climate System. Springer, Berlin (2005)

  24. 24

    LeMone M.: Momentum transport by a line of cumulonimbus. J. Atmos. Sci. 40(7), 1815–1834 (1983)

  25. 25

    LeMone M., Moncrieff M.: Momentum and mass transport by convective bands: comparisons of highly idealized dynamical models to observations. J. Atmos. Sci. 51(2), 281–305 (1994)

  26. 26

    LeMone M., Zipser E., Trier S.: The role of environmental shear and thermodynamic conditions in determining the structure and evolution of mesoscale convective systems during TOGA COARE. J. Atmos. Sci. 55(23), 3493–3518 (1998)

  27. 27

    Lin J.L., Kiladis G.N., Mapes B.E., Weickmann K.M., Sperber K.R., Lin W., Wheeler M., Schubert S.D., Del Genio A., Donner L.J., Emori S., Gueremy J.F., Hourdin F., Rasch P.J., Roeckner E., Scinocca J.F.: Tropical intraseasonal variability in 14 IPCC AR4 climate models Part I: convective signals. J. Clim. 19, 2665–2690 (2006)

  28. 28

    Majda, A.J.: Introduction to PDEs and waves for the atmosphere and ocean. Courant Lecture Notes in Mathematics, vol. 9. American Mathematical Society, Providence (2003)

  29. 29

    Majda A.J.: New multi-scale models and self-similarity in tropical convection. J. Atmos. Sci. 64, 1393–1404 (2007)

  30. 30

    Majda A.J., Biello J.A.: A multiscale model for the intraseasonal oscillation. Proc. Natl. Acad. Sci. USA 101(14), 4736–4741 (2004)

  31. 31

    Majda A.J., Stechmann S.N.: A simple dynamical model with features of convective momentum transport. J. Atmos. Sci. 66, 373–392 (2009)

  32. 32

    Majda A.J., Stechmann S.N.: The skeleton of tropical intraseasonal oscillations. Proc. Natl. Acad. Sci. 106(21), 8417 (2009)

  33. 33

    Majda A.J., Stechmann S.N.: Nonlinear dynamics and regional variations in the MJO skeleton. J. Atmos. Sci. 68, 3053–3071 (2011)

  34. 34

    Mapes B.: Gregarious tropical convection. J. Atmos. Sci. 50(13), 2026–2037 (1993)

  35. 35

    Mapes B.E., Tulich S., Lin J.L., Zuidema P.: The mesoscale convection life cycle: building block or prototype for large-scale tropical waves?. Dyn. Atmos. Oceans 42, 3–29 (2006)

  36. 36

    Moncrieff M.W.: Organized convective systems: archetypal dynamical models, mass and momentum flux theory, and parameterization. Q. J. R. Meterol. Soc. 118(507), 819–850 (1992)

  37. 37

    Moncrieff M.W., Green J.S.A.: The propagation and transfer properties of steady convective overturning in shear. Q. J. R. Meterol. Soc. 98(416), 336–352 (1972)

  38. 38

    Myers D., Waliser D.: Three-dimensional water vapor and cloud variations associated with the Madden–Julian oscillation during Northern Hemisphere winter. J. Clim. 16(6), 929–950 (2003)

  39. 39

    Nakazawa T.: Tropical super clusters within intraseasonal variations over the western Pacific. J. Meterol. Soc. Jpn. 66(6), 823–839 (1988)

  40. 40

    Plumb R.A.: The interaction of two internal waves with the mean flow: Implications for the theory of the quasi-biennial oscillation. J. Atmos. Sci. 34, 1847–1858 (1977)

  41. 41

    Roundy P., Frank W.: A climatology of waves in the equatorial region. J. Atmos. Sci. 61(17), 2105–2132 (2004)

  42. 42

    Ruzmaikin A., Lawrence J., Cadavid C.: A simple model of stratospheric dynamics including solar variability. J. Clim. 16(10), 1593–1600 (2003)

  43. 43

    Stechmann S.N., Majda A.J.: Gravity waves in shear and implications for organized convection. J. Atmos. Sci. 66, 2579–2599 (2009)

  44. 44

    Stechmann S.N., Majda A.J., Khouider B.: Nonlinear dynamics of hydrostatic internal gravity waves. Theor. Comput. Fluid Dyn. 22, 407–432 (2008)

  45. 45

    Straub K.H., Kiladis G.N.: The observed structure of convectively coupled Kelvin waves: comparison with simple models of coupled wave instability. J. Atmos. Sci. 60(14), 1655–1668 (2003)

  46. 46

    Takayabu Y.N.: Large-scale cloud disturbances associated with equatorial waves. I: Spectral features of the cloud disturbances. J. Meteorol. Soc. Jpn. 72(3), 433–449 (1994)

  47. 47

    Takayabu Y.N.: Large-scale cloud disturbances associated with equatorial waves. II: Westward-propagating inertio-gravity waves. J. Meteorol. Soc. Jpn. 72(3), 451–465 (1994)

  48. 48

    Takayabu Y.N., Lau K.M., Sui C.H.: Observation of a quasi-2-day wave during TOGA COARE. Mon. Weather Rev. 124(9), 1892–1913 (1996)

  49. 49

    Tulich S.N., Randall D., Mapes B.: Vertical-mode and cloud decomposition of large-scale convectively coupled gravity waves in a two-dimensional cloud-resolving model. J. Atmos. Sci. 64, 1210–1229 (2007)

  50. 50

    Tung W., Yanai M.: Convective momentum transport observed during the TOGA COARE IOP. Part I: general features. J. Atmos. Sci. 59(11), 1857–1871 (2002)

  51. 51

    Tung W., Yanai M.: Convective momentum transport observed during the TOGA COARE IOP. Part II: case studies. J. Atmos. Sci. 59(17), 2535–2549 (2002)

  52. 52

    Wheeler M., Kiladis G.N.: Convectively coupled equatorial waves: analysis of clouds and temperature in the wavenumber–frequency domain. J. Atmos. Sci. 56(3), 374–399 (1999)

  53. 53

    Wheeler M., Kiladis G.N., Webster P.J.: Large-scale dynamical fields associated with convectively coupled equatorial waves. J. Atmos. Sci. 57(5), 613–640 (2000)

  54. 54

    Yanai M., Esbensen S., Chu J.H.: Determination of bulk properties of tropical cloud clusters from large-scale heat and moisture budgets. J. Atmos. Sci. 30, 611–627 (1973)

  55. 55

    Yang G., Hoskins B., Slingo J.: Convectively coupled equatorial waves. Part I: horizontal and vertical structures. J. Atmos. Sci. 64(10), 3406–3423 (2007)

  56. 56

    Zhang, C.: Madden–Julian Oscillation. Rev. Geophys. 43, G2003+ (2005). doi:10.1029/2004RG000158

Download references

Author information

Correspondence to Samuel N. Stechmann.

Additional information

Communicated by R. Klein.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Stechmann, S.N., Majda, A.J. & Skjorshammer, D. Convectively coupled wave–environment interactions. Theor. Comput. Fluid Dyn. 27, 513–532 (2013). https://doi.org/10.1007/s00162-012-0268-8

Download citation

Keywords

  • Convectively coupled equatorial waves
  • Convective momentum transport
  • Tropical convection
  • Madden–Julian Oscillation
  • Wave–mean flow interaction