Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Flow of an electrorheological fluid between eccentric rotating cylinders


Electrorheological fluids have numerous potential applications in vibration dampers, brakes, valves, clutches, exercise equipment, etc. The flows in such applications are complex three-dimensional flows. Most models that have been developed to describe the flows of electrorheological fluids are one-dimensional models. Here, we discuss the behavior of two fully three-dimensional models for electrorheological fluids. The models are such that they reduce, in the case of simple shear flows with the intensity of the electric field perpendicular to the streamlines, to the same constitutive relation, but they would not be identical in more complicated three-dimensional settings. In order to show the difference between the two models, we study the flow of these fluids between eccentrically placed rotating cylinders kept at different potentials, in the setting that corresponds to technologically relevant problem of flow of electrorheological fluid in journal bearing. Even though the two models have quite a different constitutive structure, due to the assumed forms for the velocity and pressure fields, the models lead to the same velocity field but to different pressure fields. This finding illustrates the need for considering the flows of fluids described by three-dimensional constitutive models in complex geometries, and not restricting ourselves to flows of fluids described by one-dimensional models or simple shear flows of fluids characterized by three-dimensional models.

This is a preview of subscription content, log in to check access.


  1. 1

    Abu-Jdayil B., Brunn P.O.: Effects of electrode morphology on the slit flow of an electrorheological fluid. J. Non-Newton Fluid Mech. 63(1), 45–61 (1996). doi:10.1016/0377-0257(95)01416-0

  2. 2

    Abu-Jdayil B., Brunn P.O.: Study of the flow behavior of electrorheological fluids at shear- and flow-mode. Chem. Eng. Process 36(4), 281–289 (1997). doi:10.1016/S0255-2701(97)00002-0

  3. 3

    Atkin R.J., Xiao S., Bullough W.A.: Solutions of the constitutive-equations for the flow of an electrorheological fluid in radial configurations. J. Rheol. 35(7), 1441–1461 (1991)

  4. 4

    Belza T., Pavlínek V., Sáha P., Quadrat O.: Effect of field strength and temperature on viscoelastic properties of electrorheological suspensions of urea-modified silica particles. Colloid Surf. A-Physicochem. Eng. Asp. 316(1–3), 89–94 (2008). doi:10.1016/j.colsurfa.2007.08.035

  5. 5

    Bernardi C., Canuto C., Maday Y.: Generalized Inf-Sup conditions for Chebyshev spectral approximation of the stokes problem. SIAM J. Numer. Anal. 25(6), 1237–1271 (1988). doi:10.1137/0725070

  6. 6

    Bouzidane A., Thomas M.: An electrorheological hydrostatic journal bearing for controlling rotor vibration. Comput. Struct. 86(3–5), 463–472 (2008). doi:10.1016/j.compstruc.2007.02.006

  7. 7

    Canuto C., Hussaini M.Y., Quarteroni A., Zang T.A.: Spectral Methods: Fundamentals in Single Domains, scientific computation. Springer-Verlag, Berlin (2006)

  8. 8

    Canuto C., Hussaini M.Y., Quarteroni A., Zang T.A.: Spectral Methods: Evolution to Complex Geometries and Applications to Fluid Dynamics, Scientific Computation. Springer, Berlin (2007)

  9. 9

    Chandrasekhar S.: Hydrodynamic and Hydromagnetic stability. The International series of Monographs on physics. Clarendon Press, Oxford (1961)

  10. 10

    Choi Y.T., Cho J.U., Choi S.B., Wereley N.M.: Constitutive models of electrorheological and magnetorheological fluids using viscometers. Smart Mater. Struct. 14(5), 1025–1036 (2005). doi:10.1088/0964-1726/14/5/041

  11. 11

    Coleman B.D., Markovitz H., Noll W.: Viscometric Flows of Non-Newtonian Fluids. Theory and Experiment. Springer-Verlag, Berlin (1966)

  12. 12

    Dai R.X., Dong Q., Szeri A.Z.: Approximations in hydrodynamic lubrication. J. Tribol-Trans ASME 114(1), 14–25 (1992)

  13. 13

    Edgeworth R., Dalton B.J., Parnell T.: The pitch drop experiment. Eur. J. Phys. 5(4), 198–200 (1984)

  14. 14

    Gast A.P., Zukoski C.F.: Electrorheological fluids as colloidal suspensions. Adv. Colloid Interface Sci. 30, 153–202 (1989). doi:10.1016/0001-8686(89)80006-5

  15. 15

    Gavin H.P., Hanson R.D., Filisko F.E.: Electrorheological dampers 1. Analysis and design. J. Appl. Mech-Trans ASME 63(3), 669–675 (1996)

  16. 16

    Gwynllyw D., Davies A., Phillips T.: On the effects of a piezoviscous lubricant on the dynamics of a journal bearing. J. Rheol. 40(6), 1239–1266 (1996)

  17. 17

    Halsey T.C., Martin J.E., Adolf D.: Rheology of electrorheological fluids. Phys. Rev. Lett. 68(10), 1519–1522 (1992). doi:10.1103/PhysRevLett.68.1519

  18. 18

    Huilgol, R.R.: On the definition of pressure in rheology. Rheol. Bull. 72(8), (2009)

  19. 19

    Hutter K., van de Ven A.A.F.: Field Matter Interactions in Thermoelastic Solids, Lecture Notes in Physics. Vol. 88. Springer-Verlag, Berlin (1978)

  20. 20

    Jeffery G.B.: Plane stress and plane strain in bipolar co-ordinates. Philos. Trans. R Soc. A-Math. Phys. Eng. Sci. 221, 265–293 (1921)

  21. 21

    Jeffery G.B.: The rotation of two circular cylinders in a viscous fluid. Proc. R Soc. Lond. A 101(709), 169–174 (1922)

  22. 22

    Kollias A., Dimarogonas A.: Properties of zeolite- and cornstarch-based electrorheological fluids at high shear strain rates. J. Intell. Mater. Syst. Struct. 4(4), 519–526 (1993). doi:10.1177/1045389X9300400411

  23. 23

    Krztoń-Maziopa A., Wyciślik H., Płocharski J.: Study of electrorheological properties of poly(p-phenylene) dispersions. J. Rheol. 49(6), 1177–1192 (2005). doi:10.1122/1.2048740

  24. 24

    Martin J.E., Adolf D., Halsey T.C.: Electrorheology of a model colloidal fluid. J. Colloid Interface Sci. 167(2), 437–452 (1994). doi:10.1006/jcis.1994.1379

  25. 25

    Nikolakopoulos P.G., Papadopoulos C.A.: Controllable misaligned journal bearings, lubricated with smart fluids. J. Intell. Mater. Syst. Struct. 8(2), 125–137 (1997). doi:10.1177/1045389X9700800203

  26. 26

    Pao, Y.H.: Mechanics Today. Vol. 4, pp. 209–305. Pergamon Press, New York, chap Electromagnetic forces in deformable continua (1978)

  27. 27

    Penfield P., Haus H.A.: Electrodynamics of Moving Media. MIT Press, Cambridge (1967)

  28. 28

    Peng J., Zhu K.Q.: Effects of electric field on hydrodynamic characteristics of finite-length ER journal bearings. Tribol. Int. 39(6), 533–540 (2006). doi:10.1016/j.triboint.2005.03.017

  29. 29

    Phillips T.N., Roberts G.W.: The treatment of spurious pressure modes in spectral incompressible flow calculations. J. Comput. Phys. 105(1), 150–164 (1993). doi:10.1006/jcph.1993.1060

  30. 30

    Pipkin A.C., Owen D.R.: Nearly viscometric flows. Phys. Fluids 10(4), 836–843 (1967). doi:10.1063/1.1762197

  31. 31

    Rajagopal K.R.: On implicit constitutive theories. Appl. Math. Praha. 48(4), 279–319 (2003). doi:10.1023/A:1026062615145

  32. 32

    Rajagopal K.R., Růžička M.: On the modeling of electrorheological materials. Mech. Res. Commun. 23(4), 401–407 (1996). doi:10.1016/0093-6413(96)00038-9

  33. 33

    Rajagopal K.R., Růžička M.: Mathematical modeling of electrorheological materials. Contin. Mech. Thermodyn. 13(1), 59–78 (2001). doi:10.1007/s001610100034

  34. 34

    Rajagopal K.R., Srinivasa A.R.: On thermomechanical restrictions of continua. Proc. R Soc. Lond. Ser. A Math. Phys. Eng. Sci. 460(2042), 631–651 (2004). doi:10.1098/rspa.2002.1111

  35. 35

    Rajagopal K.R., Wineman A.S.: Flow of electrorheological materials. Acta Mech. 91(1–2), 57–75 (1992)

  36. 36

    Rajagopal K.R., Yalamanchili R.C., Wineman A.S.: Modeling electrorheological materials through mixture theory. Int. J. Eng. Sci. 32(3), 481–500 (1994)

  37. 37

    Schumack M.R., Schultz W.W., Boyd J.P.: Spectral method solution of the stokes equations on nonstaggered grids. J. Comput. Phys. 94(1), 30–58 (1991). doi:10.1016/0021-9991(91)90136-9

  38. 38

    Shulman Z., Korobko E., Yanovskii Y.: The mechanism of the viscoelastic behaviour of electrorheological suspensions. J. Non-Newton Fluid Mech. 33(2), 181–196 (1989). doi:10.1016/0377-0257(89)85026-8

  39. 39

    Spencer A.J.M.: Theory of invariants. In: Eringen, A.C. (ed.) Continuum Physics, Academic Press, New York (1971)

  40. 40

    Szeri A.Z.: Fluid Film Lubrication: Theory and Design. Cambridge University Press, Cambridge (1998)

  41. 41

    Thomasset F.: Implementation of Finite Element Methods for Navier–Stokes Equations. Springer Series in Computational Physics. Springer-Verlag, New York (1981)

  42. 42

    Truesdell C.: The meaning of viscometry in fluid dynamics. Annu. Rev. Fluid Mech. 6, 111–146 (1974). doi:10.1146/annurev.fl.06.010174.000551

  43. 43

    Truesdell C., Noll W.: The non-linear field theories of mechanics. In: Flüge, S. (ed.) Handbuch der Physik, Springer, Berlin (1965)

  44. 44

    Weideman J.A., Reddy S.C.: A MATLAB differentiation matrix suite. ACM Trans. Math. Softw. 26(4), 465–519 (2000). doi:10.1145/365723.365727

  45. 45

    Wineman A.S., Rajagopal K.R.: On constitutive equations for electrorheological materials. Contin. Mech. Thermodyn. 7(1), 1–22 (1995). doi:10.1007/BF01175766

  46. 46

    Winslow W.M.: Induced fibration of suspensions. J. Appl. Phys. 20(12), 1137–1140 (1949). doi:10.1063/1.1698285

  47. 47

    Zukoski C.F.: Material properties and the electrorheological response. Annu. Rev. Mater. Sci. 23(1), 45–78 (1993). doi:10.1146/annurev.ms.23.080193.000401

Download references

Author information

Correspondence to K. R. Rajagopal.

Additional information

Dedicated to professor R. R. Huilgol on the occasion of his seventieth birthday.

Communicated by Zikanor.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Průša, V., Rajagopal, K.R. Flow of an electrorheological fluid between eccentric rotating cylinders. Theor. Comput. Fluid Dyn. 26, 1–21 (2012). https://doi.org/10.1007/s00162-011-0224-z

Download citation


  • Electrorheological fluids
  • Constitutive modelling
  • Numerical simulation
  • Eccentric cylinders