Advertisement

Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Void growth measurement and modelling in a thermosetting epoxy resin using SEM and tomography techniques

Abstract

Void growth and failure in an epoxy resin is investigated. Tensile tests are carried out on double-notched round bars. Stress triaxiality in the net section is controlled by the use of two different notch root radii. SEM and computed tomography observations are conducted on regions of interest to identify voids and evaluate their growth. Failure initiation sites are analysed, revealing critical defects in the form of voids or particles. The macroscopic and microscopic experimental results are used to optimize the Gurson–Tvergaard–Needleman model. A finite element analysis is performed to study the mechanical response of the notched specimens. The peaks of the maximum principal stress are found to coincide with the locations of the failure initiation sites observed experimentally, and the model is shown to be able to handle non-uniform initial void distributions.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22

References

  1. 1.

    Laiarinandrasana, L., Morgeneyer, T.F., Cheng, Y., Helfen, L., Le Saux, V., Marco, Y.: Microstructural observations supporting thermography measurements for short glass fibre thermoplastic composites under fatigue loading. Contin. Mech. Thermodyn. (2019). https://doi.org/10.1007/s00161-019-00748-4

  2. 2.

    Scott, A.E., Sinclair, I., Spearing, S.M., Thionnet, A., Bunsell, A.R.: Damage accumulation in a carbon/epoxy composite: comparison between a multiscale model and computed tomography experimental results. Compos. Part A Appl. Sci. Manuf. 43(9), 1514–1522 (2012)

  3. 3.

    Swolfs, Y., Verpoest, I., Gorbatikh, L.: A review of input data and modelling assumptions in longitudinal strength models for unidirectional fibre-reinforced composites. Compos. Struct. 150, 153–172 (2016)

  4. 4.

    Laiarinandrasana, L., Besson, J., Lafarge, M., Hochstetter, G.: Temperature dependent mechanical behaviour of PVDF: experiments and numerical modelling. Int. J. Plast. 25(7), 1301–1324 (2009)

  5. 5.

    Challier, M., Besson, J., Laiarinandrasana, L., Piques, R.: Damage and fracture of polyvinylidene fluoride (PVDF) at 20 degree C: experiments and modelling. Eng. Fract. Mech. 73, 79–90 (2006)

  6. 6.

    Boisot, G., Laiarinandrasana, L., Besson, J., Fond, C., Hochstetter, G.: Experimental investigations and modeling of volume change induced by void growth in polyamide 11. Int. J. Solids Struct. 48(19), 2642–2654 (2011)

  7. 7.

    Selles, N., King, A., Proudhon, H., Saintier, N., Laiarinandrasana, L.: Time dependent voiding mechanisms in polyamide 6 submitted to high stress triaxiality: experimental characterisation and finite element modelling. Mech. Time Depend. Mater. 22(3), 351–371 (2018)

  8. 8.

    Morelle, X.P., Chevalier, J., Bailly, C., Pardoen, T., Lani, F.: Mechanical characterization and modeling of the deformation and failure of the highly crosslinked RTM6 epoxy resin. Mech. Time Depend. Mater. 21(3), 419–454 (2017)

  9. 9.

    Tvergaard, V., Needleman, A.: Analysis of the cup-cone fracture in a round tensile bar. Acta Metall. 32(1), 157–169 (1984)

  10. 10.

    Cayzac, H.A., Saï, K., Laiarinandrasana, L.: Damage based constitutive relationships in semi-crystalline polymer by using multi-mechanisms model. Int. J. Plast. 51, 47–64 (2013)

  11. 11.

    Laiarinandrasana, L., Klinkova, O., Nguyen, F., Proudhon, H., Morgeneyer, T.F., Ludwig, W.: Three dimensional quantification of anisotropic void evolution in deformed semi-crystalline polyamide 6. Int. J. Plast. 83, 19–36 (2016)

  12. 12.

    Cantwell, W.J., Roulin-Moloney, A.C., Kaiser, T.: Fractography of unfilled and particulate-filled epoxy resins. J. Mater. Sci. 23(5), 1615–1631 (1988)

  13. 13.

    Schindelin, J., Arganda-Carreras, I., Frise, E., Kaynig, V., Longair, M., Pietzsch, T., Preibisch, S., Rueden, C., Saalfeld, S., Schmid, B., Tinevez, J.Y., White, D.J., Hartenstein, V., Eliceiri, K., Tomancak, P., Cardona, A.: Fiji: an open-source platform for biological-image analysis. Nat. Methods 9, 676–682 (2012)

  14. 14.

    Preibisch, S., Saalfeld, S., Tomancak, P.: Globally optimal stitching of tiled 3D microscopic image acquisitions. Bioinformatics 25(11), 1463–1465 (2009)

  15. 15.

    Feret, L.: La grosseur des grains des matières pulvérulentes. Premières Communications de la Nouvelle Association Internationale pour l’Essai des Matériaux, groupe D, pp. 428–436 (1930)

  16. 16.

    Weitkamp, T., Scheel, M., Giorgetta, J.L., Joyet, V., Le Roux, V., Cauchon, G., Moreno, T., Polack, F., Thompson, A., Samama, J.P.: The tomography beamline ANATOMIX at synchrotron SOLEIL. J. Phys. Conf. Ser. 849, 12–37 (2017)

  17. 17.

    Gurson, A.L.: Continuum theory of ductile rupture by void nucleation and growth: part I—yield criteria and flow rules for porous ductile media. J. Eng. Mater. Technol. 99(1), 2–15 (1977)

  18. 18.

    Tvergaard, V.: Influence of void nucleation on ductile shear fracture at a free surface. J. Mech. Phys. Solids 30(6), 399–425 (1982)

  19. 19.

    Vaz Jr., M., Andrade Pires, F.M.: A note on the thermal effects upon a Gurson-type material model. Contin. Mech. Thermodyn. 28(3), 785–798 (2016)

  20. 20.

    Besson, J., Steglich, D., Brocks, W.: Modeling of crack growth in round bars and plane strain specimens. Int. J. Solids Struct. 38(46), 8259–8284 (2001)

  21. 21.

    Besson, J., Foerch, R.: Large scale object-oriented finite element code design. Comput. Methods. Appl. Mech. Eng. 142(1), 165–187 (1997)

  22. 22.

    Bridgman, P.W.: The stress distribution at the neck of a tension specimen. Trans. ASM 32, 553–574 (1944)

Download references

Acknowledgements

The research leading to these results has been carried out within the framework of the FiBreMoD project and has received funding from the European Union’s Horizon 2020 research and innovation programme under Marie Skłodowska-Curie Grant Agreement No 722626. The authors would also like to acknowledge Synchrotron SOLEIL for providing the synchrotron radiation facilities (Proposal 20180023) and thank Jonathan Perrin, Mario Scheel and Timm Weitkamp for their assistance in using the beamline ANATOMIX. ANATOMIX is an Equipment of Excellence (EQUIPEX) funded by the “Investments for the Future” programme of the French National Research Agency (ANR), project “NanoimagesX”, grant No ANR-11-EQPX-0031. Christian Breite gratefully acknowledges Stepan V. Lomov and Larissa Gorbatikh from KU Leuven for their fruitful discussions and supervision of his PhD. Yentl Swolfs acknowledges FWO Flanders for his postdoctoral fellowship.

Author information

Correspondence to Jan Rojek.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Communicated by Johlitz, Laiarinandrasana and Marco.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Rojek, J., Breite, C., Swolfs, Y. et al. Void growth measurement and modelling in a thermosetting epoxy resin using SEM and tomography techniques. Continuum Mech. Thermodyn. 32, 471–488 (2020). https://doi.org/10.1007/s00161-020-00865-5

Download citation

Keywords

  • Epoxy
  • Failure criterion
  • Constitutive modelling
  • Elasto-viscoplasticity
  • Finite element method