Advertisement

A consistent variational formulation of Bishop nonlocal rods

  • R. BarrettaEmail author
  • S. Ali Faghidian
  • F. Marotti de Sciarra
Original Article
  • 29 Downloads

Abstract

Thick rods are employed in nanotechnology to build modern electromechanical systems. Design and optimization of such structures can be carried out by nonlocal continuum mechanics which is computationally convenient when compared to atomistic strategies. Bishop’s kinematics is able to describe small-scale thick rods if a proper mathematical model of nonlocal elasticity is formulated to capture size effects. In all papers on the matter, nonlocal contributions are evaluated by replacing Eringen’s integral convolution with the consequent (but not equivalent) differential equation governed by Helmholtz’s differential operator. As notorious in integral equation theory, this replacement is possible for convolutions, defined in unbounded domains, governed by averaging kernels which are Green’s functions of differential operators. Indeed, Eringen himself, in order to study nonlocal problems defined in unbounded domains, such as screw dislocations and wave propagation, suggested to replace integro-differential equations with differential conditions. A different scenario appears in Bishop rod mechanics where nonlocal integral convolutions are defined in bounded structural domains, so that Eringen’s nonlocal differential equation has to be supplemented with additional boundary conditions. The objective is achieved by formulating the governing nonlocal equations by a proper variational statement. The new methodology provides an amendment of previous contributions in the literature and is illustrated by investigating the elastostatic behavior of simple structural schemes. Exact solutions of Bishop rods are evaluated in terms of nonlocal parameter and cross section gyration radius. Both hardening and softening structural responses are predictable with a suitable tuning of the parameters.

Keywords

Bishop rod Nonlocal elasticity Integral and differential laws Analytical modeling NEMS 

Notes

Acknowledgements

The financial support of the Italian Ministry for University and Research (P.R.I.N. National Grant 2017, Project Code 2017J4EAYB; University of Naples Federico II Research Unit) is gratefully acknowledged.

References

  1. 1.
    Ramsden, J.J.: Nanotechnology, An Introduction, 2nd edn. Elsevier, New York (2016)Google Scholar
  2. 2.
    Romano, G., Barretta, R., Diaco, M.: Iterative methods for nonlocal elasticity problems. Continuum Mech. Thermodyn. 31(3), 669–689 (2019).  https://doi.org/10.1007/s00161-018-0717-8 ADSMathSciNetCrossRefGoogle Scholar
  3. 3.
    Hache, F., Challamel, N., Elishakoff, I.: Asymptotic derivation of nonlocal plate models from three-dimensional stress gradient elasticity. Continuum Mech. Thermodyn. (2018).  https://doi.org/10.1007/s00161-018-0622-1
  4. 4.
    Berkache, K., Deogekar, S., Goda, I., Catalin Picu, R., Ganghoffer, J.-F.: Identification of equivalent couple-stress continuum models for planar random fibrous media. Continuum Mech. Thermodyn. (2018).  https://doi.org/10.1007/s00161-018-0710-2
  5. 5.
    Abali, B.E.: Revealing the physical insight of a length-scale parameter in metamaterials by exploiting the variational formulation. Continuum Mech. Thermodyn. (2018).  https://doi.org/10.1007/s00161-018-0652-8
  6. 6.
    Gharahi, A., Schiavone, P.: Plane micropolar elasticity with surface flexural resistance. Continuum Mech. Thermodyn. 30, 675–688 (2018).  https://doi.org/10.1007/s00161-018-0637-7 MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Surana, K.S., Mysore, D., Reddy, J.N.: Thermodynamic consistency of beam theories in the context of classical and non-classical continuum mechanics and a thermodynamically consistent new formulation. Continuum Mech. Thermodyn. 31, 1283–1312 (2019).  https://doi.org/10.1007/s00161-019-00744-8 ADSMathSciNetCrossRefGoogle Scholar
  8. 8.
    Cuomo, M.: Continuum damage model for strain gradient materials with applications to 1D examples. Continuum Mech. Thermodyn. 31, 969–987 (2019).  https://doi.org/10.1007/s00161-018-0698-7 ADSMathSciNetCrossRefGoogle Scholar
  9. 9.
    Ask, A., Forest, S., Appolaire, B., Ammar, K.: A Cosserat-phase-field theory of crystal plasticity and grain boundary migration at finite deformation. Continuum Mech. Thermodyn. 31, 1109–1141 (2019).  https://doi.org/10.1007/s00161-018-0727-6 ADSMathSciNetCrossRefGoogle Scholar
  10. 10.
    Barretta, R., Marotti de Sciarra, F.: Constitutive boundary conditions for nonlocal strain gradient elastic nano-beams. Int. J. Eng. Sci. 130, 187–198 (2018).  https://doi.org/10.1016/j.ijengsci.2018.05.009 MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Barretta, R., Faghidian, S.A., Marotti de Sciarra, F.: Stress-driven nonlocal integral elasticity for axisymmetric nano-plates. Int. J. Eng. Sci. 136, 38–52 (2019).  https://doi.org/10.1016/j.ijengsci.2019.01.003 MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Faghidian, S.A.: On non-linear flexure of beams based on non-local elasticity theory. Int. J. Eng. Sci. 124, 49–63 (2018).  https://doi.org/10.1016/j.ijengsci.2017.12.002 MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Apuzzo, A., Barretta, R., Faghidian, S.A., Luciano, R., Marotti de Sciarra, F.: Free vibrations of elastic beams by modified nonlocal strain gradient theory. Int. J. Eng. Sci. 133, 99–108 (2018).  https://doi.org/10.1016/j.ijengsci.2018.09.002 MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Apuzzo, A., Barretta, R., Faghidian, S.A., Luciano, R., Marotti de Sciarra, F.: Nonlocal strain gradient exact solutions for functionally graded inflected nano-beams. Compos. Part B. 164, 667–674 (2019).  https://doi.org/10.1016/j.compositesb.2018.12.112 CrossRefGoogle Scholar
  15. 15.
    Dehrouyeh-Semnani, A.M.: On boundary conditions for thermally loaded FG beams. Int. J. Eng. Sci. 119, 109–127 (2017).  https://doi.org/10.1016/j.ijengsci.2017.06.017 MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Farajpour, A., Ghayesh, M.H., Farokhi, H.: A review on the mechanics of nanostructures. Int. J. Eng. Sci. 133, 231–263 (2018).  https://doi.org/10.1016/j.ijengsci.2018.09.006 MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Ghayesh, M.H., Farajpour, A.: A review on the mechanics of functionally graded nanoscale and microscale structures. Int. J. Eng. Sci. 137, 8–36 (2019).  https://doi.org/10.1016/j.ijengsci.2018.12.001 MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Eringen, A.C.: On differential equations of nonlocal elasticity and solutions of screw dislocation and surface waves. J. Appl. Phys. 54, 4703–4710 (1983).  https://doi.org/10.1063/1.332803 ADSCrossRefGoogle Scholar
  19. 19.
    Tricomi, F.G.: Integral Equations. Interscience, New York (1957). Reprinted by Dover Books on Mathematics (1985)Google Scholar
  20. 20.
    Rafii-Tabar, H., Ghavanloo, E., Fazelzadeh, S.A.: Nonlocal continuum-based modeling of mechanical characteristics of nanoscopic structures. Phys. Rep. 638, 1–97 (2016).  https://doi.org/10.1016/j.physrep.2016.05.003 ADSMathSciNetCrossRefGoogle Scholar
  21. 21.
    Peddieson, J., Buchanan, G.R., McNitt, R.P.: Application of nonlocal continuum models to nanotechnology. Int. J. Eng. Sci. 41, 305–312 (2003).  https://doi.org/10.1016/S0020-7225(02)00210-0 CrossRefGoogle Scholar
  22. 22.
    Challamel, N., Wang, C.M.: The small length scale effect for a non-local cantilever beam: a paradox solved. Nanotechnol. 19, 345703 (2008).  https://doi.org/10.1088/0957-4484/19/34/345703 CrossRefGoogle Scholar
  23. 23.
    Li, C., Yao, L., Chen, W., Li, S.: Comments on nonlocal effects in nano-cantilever beams. Int. J. Eng. Sci. 87, 47–57 (2015).  https://doi.org/10.1016/j.ijengsci.2014.11.006 CrossRefGoogle Scholar
  24. 24.
    Fernández-Sáez, J., Zaera, R., Loya, J.A., Reddy, J.N.: Bending of Euler-Bernoulli beams using Eringen’s integral formulation: a paradox resolved. Int. J. Eng. Sci. 99, 107–116 (2016).  https://doi.org/10.1016/j.ijengsci.2015.10.013 MathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    Romano, G., Barretta, R., Diaco, M., Marotti de Sciarra, F.: Constitutive boundary conditions and paradoxes in nonlocal elastic nano-beams. Int. J. Mech. Sci. 121, 151–156 (2017).  https://doi.org/10.1016/j.ijmecsci.2016.10.036 CrossRefGoogle Scholar
  26. 26.
    Romano, G., Luciano, R., Barretta, R., Diaco, M.: Nonlocal integral elasticity in nanostructures, mixtures, boundary effects and limit behaviours. Continuum. Mech. Thermodyn. 30, 641–655 (2018).  https://doi.org/10.1007/s00161-018-0631-0 MathSciNetCrossRefzbMATHGoogle Scholar
  27. 27.
    Bishop, R.E.D.: Longitudinal waves in beams. Aeronaut. J. 3, 280–293 (1952).  https://doi.org/10.1017/S0001925900000706 MathSciNetCrossRefGoogle Scholar
  28. 28.
    Han, J.-B., Hong, S.-Y., Song, J.-H., Kwon, H.-W.: Vibrational energy flow models for the Rayleigh–Love and Rayleigh–Bishop rods. J. Sound Vib. 333, 520–540 (2014).  https://doi.org/10.1016/j.jsv.2013.08.027 ADSCrossRefGoogle Scholar
  29. 29.
    Nazemnezhad, R., Kamali, K.: Free axial vibration analysis of axially functionally graded thick nanorods using nonlocal Bishop’s theory. Steel Compos. Struct. 28, 749–758 (2018).  https://doi.org/10.12989/scs.2018.28.6.749 CrossRefGoogle Scholar
  30. 30.
    Karličić, D.Z., Ayed, A., Flaieh, E.: Nonlocal axial vibration of the multiple Bishop nanorod system. Math. Mech. Solids (2018). https://doi.org/10.1177%2F1081286518766577Google Scholar
  31. 31.
    Aydogdu, M.: Longitudinal wave propagation in nanorods using a general nonlocal unimodal rod theory and calibration of nonlocal parameter with lattice dynamics. Int. J. Eng. Sci. 56, 17–28 (2012).  https://doi.org/10.1016/j.ijengsci.2012.02.004 CrossRefGoogle Scholar
  32. 32.
    Ecsedi, I., Baksa, A.: Free axial vibration of nanorods with elastic medium interaction based on nonlocal elasticity and Rayleigh model. Mech. Res. Commun. 86, 1–4 (2017).  https://doi.org/10.1016/j.mechrescom.2017.10.003 CrossRefGoogle Scholar
  33. 33.
    Li, X.-F., Tang, G.-J., Shen, Z.-B., Lee, K.Y.: Size-dependent resonance frequencies of longitudinal vibration of a nonlocal Love nanobar with a tip nanoparticle. Math. Mech. Solids. 22, 1529–1542 (2017).  https://doi.org/10.1177/1081286516640597 MathSciNetCrossRefzbMATHGoogle Scholar
  34. 34.
    Li, X.-F., Shen, Z.-B., Lee, K.Y.: Axial wave propagation and vibration of nonlocal nanorods with radial deformation and inertia. ZAMM J. Appl. Math. Mech. 97, 602–616 (2017).  https://doi.org/10.1002/zamm.201500186 MathSciNetCrossRefGoogle Scholar
  35. 35.
    Liu, H., Liu, H., Yang, J.: Longitudinal waves in carbon nanotubes in the presence of transverse magnetic field and elastic medium. Physica E 93, 153–159 (2017).  https://doi.org/10.1016/j.physe.2017.05.022 ADSCrossRefGoogle Scholar
  36. 36.
    Güven, U.: A more general investigation for the longitudinal stress waves in microrods with initial stress. Acta Mech. 223, 2065–2074 (2012).  https://doi.org/10.1007/s00707-012-0682-4 MathSciNetCrossRefzbMATHGoogle Scholar
  37. 37.
    Güven, U.: A generalized nonlocal elasticity solution for the propagation of longitudinal stress waves in bars. Eur. J. Mech. A Solids. 45, 75–79 (2014).  https://doi.org/10.1016/j.euromechsol.2013.11.014 ADSMathSciNetCrossRefzbMATHGoogle Scholar
  38. 38.
    Güven, U.: General investigation for longitudinal wave propagation under magnetic field effect via nonlocal elasticity. Appl. Math. Mech.-Engl. Ed. 36, 1305–1318 (2015).  https://doi.org/10.1007/s10483-015-1985-9 MathSciNetCrossRefzbMATHGoogle Scholar
  39. 39.
    Arefi, M.: Surface effect and non-local elasticity in wave propagation of functionally graded piezoelectric nano-rod excited to applied voltage. Appl. Math. Mech.-Engl. Ed. 37, 289–302 (2016).  https://doi.org/10.1007/s10483-016-2039-6 MathSciNetCrossRefzbMATHGoogle Scholar
  40. 40.
    Arefi, M.: Analysis of wave in a functionally graded magneto-electro-elastic nano-rod using nonlocal elasticity model subjected to electric and magnetic potentials. Acta Mech. 227, 2529–2542 (2016).  https://doi.org/10.1007/s00707-016-1584-7 MathSciNetCrossRefzbMATHGoogle Scholar
  41. 41.
    Lv, Z., Liu, H., Li, Q.: Effect of uncertainty in material properties on wave propagation characteristics of nanorod embedded in elastic medium. Int. J. Mech. Mater. Des. 14, 375–392 (2018).  https://doi.org/10.1007/s10999-017-9381-6 CrossRefGoogle Scholar
  42. 42.
    Rao, S.S.: Vibration of Continuous Systems. Wiley, New Jersey (2007)Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Structures for Engineering and ArchitectureUniversity of Naples Federico IINaplesItaly

Personalised recommendations