Advertisement

Nonlinear travelling strain waves in a gradient-elastic medium

  • A. O. MalkhanovEmail author
  • V. I. Erofeev
  • A. V. Leontieva
Original Article

Abstract

In this paper, we investigate the influence of geometric nonlinearity on the propagation of longitudinal and shear waves in a gradient-elastic medium. It is shown that taking into account surface energy we observe the destruction of travelling plane longitudinal and shear waves.

Keywords

Gradient-elastic medium Surface energy Geometric nonlinearity Travelling wave 

Notes

Acknowledgements

This work was supported by a Grant from the Government of the Russian Federation (Contract No. 14.Y26.31.0031).

References

  1. 1.
    Maugin, G.A., Metrikine, A.V. (eds.): Mechanics of Generalized Continua: On Hundred Years After the Cosserats. Advances in Mathematics and Mechanics, vol. 21, p. 338. Springer, Berlin (2010)Google Scholar
  2. 2.
    Altenbach, H., Maugin, G.A., Erofeev, V. (eds.): Mechanics of Generalized Continua. Advanced Structured Matherials, vol. 7, p. 350. Springer, Berlin (2011)zbMATHGoogle Scholar
  3. 3.
    Altenbach, H., Forest, S., Krivtsov, A. (eds.): Generalized Continua as Models with Multi-scale Effects or Under Multi-field Actions. Advanced Structured Matherials, vol. 22, p. 332. Springer, Berlin (2013)Google Scholar
  4. 4.
    Altenbach, H., Eremeyev, V.A. (eds.): Generalized Continua—From the Theory to Engineering Applications, p. 388. Springer, Wien (2013)zbMATHGoogle Scholar
  5. 5.
    Bagdoev, A.G., Erofeyev, V.I., Shekoyan, A.V.: Wave Dynamics of Generalized Continua. Advanced Structured Matherials, vol. 24, p. 274. Springer, Berlin (2016)CrossRefGoogle Scholar
  6. 6.
    Altenbach, H., Forest, S. (eds.): Generalized Continua as Models for Classical and Advanced Materials. Advanced Structured Matherials, vol. 42, p. 458. Springer, Zürich (2016)Google Scholar
  7. 7.
    Maugin, G.A.: Non-Classical Continuum Mechanics. Advanced Structured Matherials, vol. 51, p. 260. Springer, Singapore (2017)CrossRefGoogle Scholar
  8. 8.
    dell’Isola, F., Eremeyev, V.A., Porubov, A. (eds.): Advanced in Mechanics of Microstructured Media and Structures. Advanced Structured Matherials, vol. 87, p. 370. Springer, Cham (2018)Google Scholar
  9. 9.
    Altenbach, H., Pouget, J., Rousseau, M., Collet, B., Michelitsch, T. (eds.): Generalized Models and Non-Classical Approaches in Complex Materials 1. Advanced Structured Matherials, vol. 89, p. 760. Springer, Cham (2018)zbMATHGoogle Scholar
  10. 10.
    Altenbach, H., Pouget, J., Rousseau, M., Collet, B., Michelitsch, T. (eds.): Generalized Models and Non-Classical Approaches in Complex Materials 2. Advanced Structured Matherials, vol. 90, p. 306. Springer, Cham (2018)Google Scholar
  11. 11.
    Erofeev, V., Porubov, A., Sargsyan, S. (Editors). Nonlinear Wave Dynamics of Generalized Continua. Materials Physics and Mechanics. (2018). Vol. 35, No 1 (Spesial Issue dedicated to the memory E.L. Aero and G. Maugin). 190 pGoogle Scholar
  12. 12.
    Le Roux, J.: Etude geometrique de la flexion, dans les deformations infinitesimaleg d’nn milien continu. Annales de l’Ecole Normale Supereure. 3e serie. (1911). Tome 28. P.523-579Google Scholar
  13. 13.
    Le Roux, J.: Recherchesg sur la geometrie beg deformatios finies. Annales de l’Ecole Normale Supereure. 3e serie. Tome 30, pp. 193–245 (1913)Google Scholar
  14. 14.
    Jaramillo, T.J.: A generalization of the energy function of elasticity theory. Dissertation, Department of Mathematics, University of Chicago, p. 154 (1929)Google Scholar
  15. 15.
    Cosserat, E., et al.: Theorie des Corp Deformables, p. 226. Librairie Scientifique A. Hermann et Fils, Paris (1909)zbMATHGoogle Scholar
  16. 16.
    Erofeyev, V.I.: Wave Processes in Solid with Microstructure. Stability, Vibration and Control of Systems, vol. 8, p. 256. World Scientific, New Jersey (2003)CrossRefGoogle Scholar
  17. 17.
    Mindlin, R.D.: Micro-structure in linear elasticity. Arch. Ration. Mech. Anal. 16, 51–78 (1964)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Vardoulakis, I., Sulem, J.: Bifurcation Analysis in Geomechanics. Blackie Academic and Professional, London (1995)Google Scholar
  19. 19.
    Vardoulakis, I., Exadaktylos, G., Aifantis, E.: Gradient elasticity with surface energy: mode III crack problem. Int. J. Solids Struct. 33, 4531–4559 (1996)CrossRefGoogle Scholar
  20. 20.
    Exadaktylos, G., Vardoulakis, I., Aifantis, E.: Cracks in gradient elastic bodies with surfaceenergy. Proc. 4th Natl. Greek Conference on Mechanics. (eds. P.S. Theocaris and E.E. Gdoutos) 1, 341–351 (1995)Google Scholar
  21. 21.
    Vardoulakis, I., Georgiadis, H.G.: SH surface waves in a homogeneous gradient-elastic half-space with surface energy. J. Elast. 47, 147–165 (1997)MathSciNetCrossRefGoogle Scholar
  22. 22.
    Georgiadis, H.G., Velgaki, E.G.: High-frequency Rayleigh waves in materials with micro-structure and couple-stress effects. Int. J. Solids Struct. 40, 2501–2520 (2003)CrossRefGoogle Scholar
  23. 23.
    Belov, P.A., Lurie, S.A.: Theory of ideal adhesive interactions. J. Compos. Mech. Des. 13(4), 519–534 (2007)Google Scholar
  24. 24.
    Lurie, S., Zubov, V., Tuchkova, N., Volkov-Bogorodsky, D.: Advanced theoretical and numerical multiscale modeling of cohesion/adhesion interactions in continuum mechanics and its applications for filled. Comput. Mater. Sci. 45(3), 709–714 (2009)CrossRefGoogle Scholar
  25. 25.
    Frolenkova, L.Y., Shorkin, V.S.: Surface energy and adhesion energy of elastic bodies. Mech. Solids 52(1), 62–74 (2017)ADSCrossRefGoogle Scholar
  26. 26.
    Eremeyev, V.A., Rosi, G., Naili, S.: Surface/interfacial anti-plane waves in solids with surface energy. Mech. Res. Commun. 74, 8–13 (2016)CrossRefGoogle Scholar
  27. 27.
    Eremeyev, V.A., Rosi, G., Naili, S.: Comparison of anti-plane surface waves in strain-gradient materials and materials with surface stresses. Math. Mech. Solids 24(8), 2526–2535 (2019).  https://doi.org/10.1177/1081286518769960 MathSciNetCrossRefGoogle Scholar
  28. 28.
    Eremeyev, V.A., Sharma, B.L.: Anti-plane surface waves in media with surface structure: discrete versus continuum model. Int. J. Eng. Sci. 143, 33–38 (2019)CrossRefGoogle Scholar
  29. 29.
    Sharma, B.L., Eremeyev, V.A.: Wave transmission across surface interfaces in lattice structures. Int. J. Eng. Sci. 145, 103173 (2019).  https://doi.org/10.1016/j.ijengsci.2019.103173 MathSciNetCrossRefGoogle Scholar
  30. 30.
    Li, Y., Wei, P., Tang, Q.: Reflection and transmission of elastic waves at the interface between two gradient-elastic solids with surface energy. Eur. J. Mech. A Solid 52, 54–71 (2015)ADSMathSciNetCrossRefGoogle Scholar
  31. 31.
    Love, A.E.H.: A Treatise on the Mathematical Theory of Elasticity, 4th edn. Dover Publ, New York (1944)zbMATHGoogle Scholar
  32. 32.
    Butenin, N.V.: Elements of the Theory of Nonlinear Oscillations, p. 226. Blaisdell Publ. Com, New York (1965)zbMATHGoogle Scholar
  33. 33.
    Kurlenya, M.V., Oparin, V.N.: Problems of nonlinear geomechanics. Part I J. Min. Sci. 35(3), 216–230 (1999)CrossRefGoogle Scholar
  34. 34.
    Mashinskii, E.I.: Anomalies of low-intensity acoustic wave attenuation in rocks. J. Min. Sci. 44(4), 345–352 (2008)CrossRefGoogle Scholar
  35. 35.
    Kurlenya, M.V., Oparin, V.N.: Problems of nonlinear geomechanics. Part II J Min. Sci. 36(4), 305–326 (2000)CrossRefGoogle Scholar
  36. 36.
    Nikolaevskiy, V.N.: Geomechanics and Fluidodynamics, p. 350. Kluwer Academic Publishers, Dordrecht (1996)CrossRefGoogle Scholar
  37. 37.
    Suknev, S.V., Novopashin, M.D.: Gradient approach to rock strength estimation. J. Min. Sci. 35(4), 381–386 (1999)CrossRefGoogle Scholar
  38. 38.
    Preobrazhenskii, V.L.: Parametrically phase-conjugate waves: applications in nonlinear acoustic imaging and diagnostics. Physics-Uspekhi 49(1), 98–102 (2006)ADSMathSciNetCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • A. O. Malkhanov
    • 1
    Email author
  • V. I. Erofeev
    • 1
    • 2
  • A. V. Leontieva
    • 1
  1. 1.Mechanical Engineering Research Institute of Russian Academy of SciencesNizhny NovgorodRussia
  2. 2.Research Institute for MechanicsNational Research Lobachevsky State University of Nizhni NovgorodNizhny NovgorodRussia

Personalised recommendations