Advertisement

Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

On the thermomechanics of solids surrounded by liquid media: balance equations, free energy and nonlinear diffusion

Abstract

External media surround almost all structures and bodies. Caused by thermodynamical reasons, the ambient medium, a fluid or a gas in this essay, is diffusing into or out of the solid. In consequence, the solid experiences changes in mass, volume and material properties. In order to formulate the thermodynamical balance equations for open systems of this type, it is taken into account that the diffusing liquid carries mass, linear and angular momentum, internal energy and entropy into or out of the solid. In this study, chemical reactions are omitted. All equations to be developed in this work are formulated in dependence on the spatial coordinates of the material points of the solid in the current configuration. In order to derive thermodynamically motivated models for the stress tensor, the specific entropy, the chemical potential and the fluid flux vector, an exemplary constitutive model for the Helmholtz free energy per unit mass is formulated and the second law of thermodynamics for open systems is evaluated by standard methods. Numerical simulations and analytical computations of a simple model problem display some fundamental properties of the theory.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Abbreviations

Orthonormal unit vectors:

\( {\mathop {\mathbf{e }}\limits ^\rightharpoonup {}}_1, {\mathop {\mathbf{e }}\limits ^\rightharpoonup {}}_2, {\mathop {\mathbf{e }}\limits ^\rightharpoonup {}}_3\)

Vector:

\( {\mathop {\mathbf{a }}\limits ^\rightharpoonup {}}=\sum \limits _{{k}=1}^3 {a_{{k}} {\mathop {\mathbf{e }}\limits ^\rightharpoonup {}}_{{k}}} \)

Tensor of second order:

\(\mathbf{A}=\sum \limits _{{i,k}=1}^3 {A_{{ik}} {\mathop {\mathbf{e }}\limits ^\rightharpoonup {}}_{{i}} \otimes {\mathop {\mathbf{e }}\limits ^\rightharpoonup {}}_{{k}} } \)

Transpose of a tensor:

\(\mathbf{A}^{\mathrm {T}}=\sum \limits _{{i,k}=1}^3 {A_{{ki}} {\mathop {\mathbf{e }}\limits ^\rightharpoonup {}}_{{i}} \otimes {\mathop {\mathbf{e }}\limits ^\rightharpoonup {}}_{{k}} } \)

Unit tensor:

\(\mathbf{1}=\sum \limits _{{k}=1}^3 { {\mathop {\mathbf{e }}\limits ^\rightharpoonup {}}_{{k}} \otimes {\mathop {\mathbf{e }}\limits ^\rightharpoonup {}}_{{k}} } \)

Inverse of a tensor:

\(\mathbf{A}^{-1}\), \(\mathbf{A}^{-1}{} \mathbf{A}=\mathbf{AA}^{-1}=\mathbf{1}\)

Scalar product between vectors:

\( {\mathop {\mathbf{a }}\limits ^\rightharpoonup {}}\cdot {\mathop {\mathbf{b }}\limits ^\rightharpoonup {}}=\sum \limits _{{k}=1}^3 {a_{{k}} b_{{k}} } \)

Vector product:

\( {\mathop {\mathbf{a }}\limits ^\rightharpoonup {}}\times {\mathop {\mathbf{b }}\limits ^\rightharpoonup {}}=\left( {a_{\mathrm{2}} b_{\mathrm{3}} -a_3 b_2 } \right) {\mathop {\mathbf{e }}\limits ^\rightharpoonup {}}_1 +\left( {a_{\mathrm{3}} b_{\mathrm{1}} -a_1 b_3 } \right) {\mathop {\mathbf{e }}\limits ^\rightharpoonup {}}_2 +\left( {a_{\mathrm{1}} b_{\mathrm{2}} -a_2 b_1 } \right) {\mathop {\mathbf{e }}\limits ^\rightharpoonup {}}_3 \)

Dyadic product:

\(\left( { {\mathop {\mathbf{a }}\limits ^\rightharpoonup {}}\otimes {\mathop {\mathbf{b }}\limits ^\rightharpoonup {}}} \right) {\mathop {\mathbf{c }}\limits ^\rightharpoonup {}}= {\mathop {\mathbf{a }}\limits ^\rightharpoonup {}}\left( { {\mathop {\mathbf{b }}\limits ^\rightharpoonup {}}\cdot {\mathop {\mathbf{c }}\limits ^\rightharpoonup {}}} \right) \)

Tensor algebraic rule:

\(\left( {\mathbf{1}\times {\mathop {\mathbf{a }}\limits ^\rightharpoonup {}}} \right) {\mathop {\mathbf{b }}\limits ^\rightharpoonup {}}= {\mathop {\mathbf{a }}\limits ^\rightharpoonup {}}\times {\mathop {\mathbf{b }}\limits ^\rightharpoonup {}}\)

Scalar product between tensors:

\(\mathbf{A}:\mathbf{B}=\sum \limits _{{k}=1}^3 {A_{{ik}} B_{{ik}} } \)

Divergence of a vector:

\(\hbox {div}\left( {\mathop {\mathbf{u }}\limits ^\rightharpoonup {}}\left( {\mathop {\mathbf{x }}\limits ^\rightharpoonup {}}_{\mathrm{S}} \right) \right) =\sum \limits _{{k}=1}^3 {\frac{\partial u_{{k}} }{\partial x_{\mathrm {Sk}}}} \)

Divergence of a tensor:

\(\hbox {div}\left( \mathbf{A}\left( {\mathop {\mathbf{x }}\limits ^\rightharpoonup {}}_{\mathrm{S}} \right) \right) =\sum \limits _{{k}=1}^3 {\frac{\partial A_{{ik}} }{\partial x_{\mathrm {Sk}}} {\mathop {\mathbf{e }}\limits ^\rightharpoonup {}}_{{i}} } \)

Differentiation rules:

\(\hbox {div}\left( {\mathop {\mathbf{x }}\limits ^\rightharpoonup {}}_{\mathrm{S}} \times \mathbf{A}\left( {\mathop {\mathbf{x }}\limits ^\rightharpoonup {}}_{\mathrm{S}} \right) \right) =\sum \limits _{{r,k=1}}^3 {A_{{rk}} {\mathop {\mathbf{e }}\limits ^\rightharpoonup {}}_{{k}} \times {\mathop {\mathbf{e }}\limits ^\rightharpoonup {}}_{{r}} } + {\mathop {\mathbf{x }}\limits ^\rightharpoonup {}}_{\mathrm{S}} \times \hbox {div}\left( \mathbf{A} \right) \) \(\hbox {div}\left( { {\mathop {\mathbf{a }}\limits ^\rightharpoonup {}}\otimes {\mathop {\mathbf{b }}\limits ^\rightharpoonup {}}} \right) = {\mathop {\mathbf{a }}\limits ^\rightharpoonup {}}\hbox {div}\left( { {\mathop {\mathbf{b }}\limits ^\rightharpoonup {}}} \right) +\hbox {grad}\left( { {\mathop {\mathbf{a }}\limits ^\rightharpoonup {}}} \right) {\mathop {\mathbf{b }}\limits ^\rightharpoonup {}}\) \(\hbox {div}\left( {\mathbf{A}^{\mathrm {T}} {\mathop {\mathbf{a }}\limits ^\rightharpoonup {}}} \right) =\hbox {div}\left( \mathbf{A} \right) \cdot {\mathop {\mathbf{a }}\limits ^\rightharpoonup {}}+\mathbf{A}:\hbox {grad}\left( { {\mathop {\mathbf{a }}\limits ^\rightharpoonup {}}} \right) \) \(\hbox {div}\left( {\varphi {\mathop {\mathbf{a }}\limits ^\rightharpoonup {}}} \right) =\varphi \hbox {div}\left( { {\mathop {\mathbf{a }}\limits ^\rightharpoonup {}}} \right) + {\mathop {\mathbf{a }}\limits ^\rightharpoonup {}}\cdot \hbox {grad}\left( \varphi \right) \) \( {\mathop {\mathbf{b }}\limits ^\rightharpoonup {}}\cdot \hbox {grad}\left( {{ {\mathop {\mathbf{a }}\limits ^\rightharpoonup {}}^{2}}/2} \right) =\left( \hbox {div}\left( { {\mathop {\mathbf{a }}\limits ^\rightharpoonup {}}\otimes {\mathop {\mathbf{b }}\limits ^\rightharpoonup {}}} \right) - {\mathop {\mathbf{a }}\limits ^\rightharpoonup {}}\hbox {div}\left( {\mathop {\mathbf{b }}\limits ^\rightharpoonup {}}\right) \right) \cdot {\mathop {\mathbf{a }}\limits ^\rightharpoonup {}}\)

Gradient of a vector:

\(\hbox {grad}\left( {\mathop {\mathbf{a }}\limits ^\rightharpoonup {}}\left( {\mathop {\mathbf{x }}\limits ^\rightharpoonup {}}_{\mathrm{S}} \right) \right) =\frac{\partial a_{{i}} }{\partial x_{\mathrm {Sk}}} {\mathop {\mathbf{e }}\limits ^\rightharpoonup {}}_{{i}} \otimes {\mathop {\mathbf{e }}\limits ^\rightharpoonup {}}_{{k}} \) \(\hbox {GRAD}\left( {\mathop {\mathbf{p }}\limits ^\rightharpoonup {}}\left( {\mathop {\mathbf{X }}\limits ^\rightharpoonup {}}_{\mathrm{S}} \right) \right) =\frac{\partial p_{{i}} }{\partial X_{\mathrm {Sk}}} {\mathop {\mathbf{e }}\limits ^\rightharpoonup {}}_{{i}} \otimes {\mathop {\mathbf{e }}\limits ^\rightharpoonup {}}_{{k}} \)

References

  1. 1.

    Aifantis, E.C.: On the problem of diffusion in solids. Acta Mech. 37, 265–296 (1989)

  2. 2.

    Baeck, S., Srinivasa, A.R.: Diffusion of a fluid through an elastic solid undergoing large deformation. Int. J. Nonlinear Mech. 39, 201–218 (2004)

  3. 3.

    Biot, M.A.: La problème de la consolidation des matières argileuses sous une charge. Ann. Soc. Sci. Brux. B 55, 110–113 (1935)

  4. 4.

    Biot, M.A.: General theory of three-dimensional consolidation. J. Appl. Phys. 12, 155–164 (1941)

  5. 5.

    Biot, M.A.: Theory of propagation of elastic waves in a fluid-saturated porous solid I: low frequency range. J. Acoust. Soc. Am. 128, 168–178 (1956)

  6. 6.

    Bowen, R.M.: Theory of Mixtures. Continuum Physics, pp. 1–127. Academic Press, New York (1976)

  7. 7.

    Chai, A.B., Andriyana, A., Verron, E., Johan, M.R.: Mechanical characteristics of swollen elastomers under cyclic loading. Mater. Des. 44, 566–572 (2013)

  8. 8.

    Chester, S.A., Anand, L.: A coupled theory of fluid permeation and large deformations for elastomeric materials. J. Mech. Phys. Solids 58, 1879–1906 (2010)

  9. 9.

    Chester, S.A., Anand, L.: A thermo-mechanically coupled theory for fluid permeation in elastomeric materials: application to thermally responsive gels. J. Mech. Phys. Solids 59, 1978–2006 (2011)

  10. 10.

    Chester, S.A., Di Leo, C.V., Anand, L.: A finite element implementation of a coupled diffusion-deformation theory for elastomeric solids. Int. J. Solids Struct. 52, 1–18 (2015)

  11. 11.

    Coussy, O.: Mechanics of Porous Continua. Wiley, Chichester (1994)

  12. 12.

    Coussy, O.: Poromechanics. Wiley, New York (2004)

  13. 13.

    Coussy, O., Dormieux, L., Detournay, E.: From mixture theory to Biot’s approach for porous media. Int. J. Solids Struct. 35, 4619–4635 (1998)

  14. 14.

    de Boer, R.: Theory of Porous Media: Highlights in Historical Development and Current State. Springer, Berlin (2000)

  15. 15.

    Delesse, M.: Pour determiner la composition des roches. Ann. Min. 13, 379–388 (1848)

  16. 16.

    Dlubek, G., Redmann, F., Krause-Rehberg, R.: Humidity-induced plasticization and antiplasticization of polyamide 6: a positron lifetime study of the local free volume. J. Appl. Polym. Sci. 84, 244–255 (2002)

  17. 17.

    Duda, F.P., Souza, A.C., Fried, E.: A theory for species migration in a finitely strained solid with application to polymer network swelling. J. Mech. Phys. Solids 58, 518–529 (2010)

  18. 18.

    Ehlers, W.: Poröse Medien–ein kontinuumsmechanisches Modell auf Basis der Mischungstheorie. Forschungsberichte aus dem Bereich Bauwesen, 47, University GH-Essen (1989)

  19. 19.

    Ehlers, W.: Grundlegende Konzepte in der Theorie poröser Medien. Tech. Mech. 16, 63–76 (1996)

  20. 20.

    Engelhard, M., Lion, A.: Modelling the hydrothermomechanical properties of polymers close to the glass transition. Zeitschrift für Angewandte Mathematik und Mechanik 93, 102–112 (2013)

  21. 21.

    Flory, P.J.: Thermodynamics of high polymer solutions. J. Chem. Phys. 10, 51–61 (1942)

  22. 22.

    Flory, P.J.: Principles of Polymer Chemistry. Cornell University Press, Ithaca (1953). 16\(^{th}\) printing

  23. 23.

    Grandidier, J.C., Olivier, L., Lafarie-Frenot, M.C., Gigliottia, M.: Modelling the pressure dependent solubility in a thermoset resin for simulating pressure accelerated thermo-oxidation tests. Mech. Mater. 84, 44–54 (2015)

  24. 24.

    Haseeb, A.S.M.A., Jun, T.S., Fazal, M.A., Masjuki, H.H.: Degradation of physical properties of different elastomers upon exposure to palm biodiesel. Energy 36, 1814–1819 (2011)

  25. 25.

    Haupt, P.: Continuum Mechanics and Theory of Materials. Springer, Berlin (2002)

  26. 26.

    Heinrich, G., Desoyer, K.: Hydromechanische Grundlagen für dir Behandlung von stationären und instationären Grundwasserströmungen I. Ing. Arch. 23, 182–185 (1955)

  27. 27.

    Heinrich, G., Desoyer, K.: Hydromechanische Grundlagen für dir Behandlung von stationären und instationären Grundwasserströmungen II. Ing. Arch. 243, 81–84 (1956)

  28. 28.

    Heinrich, G., Desoyer, K.: Theorie dreidimensionaler Setzungsvorgänge in Tonschichten. Ing. Arch. 30, 225–253 (1961)

  29. 29.

    Hutter, K.: The foundations of thermodynamics, ist basic postulates and implications. A review of modern thermodynamics. Acta Mech. 27, 1–54 (1977)

  30. 30.

    Khare, R.: A new approach to derivation of Van’t Hoff equation for osmotic pressure of a dilute solution. Am. Int. J. Res. Sci. Technol. Eng. Math. 11, 172–174 (2015)

  31. 31.

    Kuhl, E., Steinmann, P.: Mass- and volume-specific views on thermodynamics for open systems. Proc. R. Soc. Lond. A 459, 2547–2568 (2003)

  32. 32.

    Lion, A., Dippel, B., Liebl, C.: Thermomechanical material modelling based on a hybrid free energy density depending on pressure, isochoric deformation and temperature. Int. J. Solids Struct. 51, 729–739 (2014)

  33. 33.

    Liu, Q., Robission, A., Lou, Y., Suo, Z.: Kinetics of swelling under constraint. J. Appl. Phys. 116, 064901 (2013)

  34. 34.

    Lou, Y., Robission, A., Cai, S., Suo, Z.: Swellable elastomers under constraint. J. Appl. Phys. 112, 034906 (2012)

  35. 35.

    Müller, I.: Grundzüge der Thermodynamik. Springer, Berlin (2001)

  36. 36.

    Müller, I.: A thermodynamic theory of mixtures of fluids. Arch. Ration. Mech. Anal. 28, 1–39 (1968)

  37. 37.

    Nigam, R.K., Singh, P.P.: Excess volume of mixing. Trans. Faraday Soc. 65, 950–964 (1969)

  38. 38.

    Rambert, G., Grandidier, J.C., Cangémi, L., Meimon, Y.: A modelling of the coupled thermodiffuso-elastic linear behaviour: application to explosive decompression of polymers. Oil Gas Sci. Technol. 58, 571–591 (2003)

  39. 39.

    Saijun, D., Nakason, C., Kaesaman, A., Klinpituksa, P.: Water absorption and mechanical properties of water-swellable natural rubber. Songklanakarin J. Sci. Technol. 31, 561–565 (2009)

  40. 40.

    Starkweather, H.W.: The sorption of water by nylons. J. Appl. Polym. Sci. 2, 129–133 (1959)

  41. 41.

    Truesdell, C., Toupin, R.A.: The Classical Field Theories. Handbuch der Physik, vol. 3, pp. 226–902. Springer, Berlin (1960)

  42. 42.

    Truesdell, C.: Thermodynamics of Diffusion. Rational Thermodynamics, 2nd edn, pp. 219–236. Springer, Berlin (1984)

  43. 43.

    Valancon, C., Ray, A., Grandidier, J.C.: Modelling of coupling between mechanics and water diffusion in bonded assemblies. Oil Gas Sci. Technol. 61, 746–759 (2006)

  44. 44.

    von Bertanffy L.: The theory of open systems in physics and biology. Science 111, 23–29 (1950)

  45. 44.

    Zhao, Q., Papadopoulos, P.: Modelling and simulation of liquid diffusion through a porous finitely elastic solid. Comput. Mech. 52, 553–562 (2013)

Download references

Author information

Correspondence to A. Lion.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Communicated by Michael Johlitz, Lucien Laiarinandrasana and Yann Marco.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Lion, A., Johlitz, M. On the thermomechanics of solids surrounded by liquid media: balance equations, free energy and nonlinear diffusion. Continuum Mech. Thermodyn. 32, 281–305 (2020). https://doi.org/10.1007/s00161-019-00828-5

Download citation

Keywords

  • Liquid diffusion in solids
  • Balance equations
  • Open system
  • Entropy of mixing
  • Swelling