Quasiconvex envelope for a model of finite elastoplasticity with one active slip system and linear hardening

  • Sergio Conti Email author
  • Georg Dolzmann
Original Article


An explicit characterization of the quasiconvex envelope of the condensed energy in a model for finite elastoplasticity is presented, both in two and in three spatial dimensions. A variational formulation of plasticity, which is appropriate for the first time step in a time discrete formulation of the evolution problem, is used, and it is assumed that only one slip system is active. The model includes a nonlinear elastic energy, which is invariant under SO(n), and an effective plastic contribution which is quadratic in the slip parameter. The quasiconvex envelope arises via the formation of first-order laminates.


Quasiconvexity Relaxation Elastoplasticity 



This work was partially supported by the Deutsche Forschungsgemeinschaft through the Sonderforschungsbereich 1060 “The mathematics of emergent effects”, Project A5.


  1. 1.
    Aubry, S., Fago, M., Ortiz, M.: A constrained sequential-lamination algorithm for the simulation of sub-grid microstructure in martensitic materials. J. Comput. Methods Appl. Mech. Eng. 192, 2823–2843 (2003)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Ball, J.M., Murat, F.: \(W^{1, p}\) quasiconvexity and variational problems for multiple integrals. J. Funct. Anal. 58, 225–253 (1984)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Bartels, S., Carstensen, C., Hackl, K., Hoppe, U.: Effective relaxation for microstructure simulations: algorithms and applications. Comput. Methods Appl. Mech. Eng. 193, 5143–5175 (2004)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Carstensen, C., Conti, S., Orlando, A.: Mixed analytical–numerical relaxation in finite single-slip crystal plasticity. Contin. Mech. Thermodyn. 20, 275–301 (2008)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Carstensen, C., Hackl, K., Mielke, A.: Non-convex potentials and microstructures in finite-strain plasticity. Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 458, 299–317 (2002)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Cicalese, M., Fusco, N.: A note on relaxation with constraints on the determinant. ESAIM: Cocv. (2017) (to appear)
  7. 7.
    Conti, S.: Relaxation of single-slip single-crystal plasticity with linear hardening. In: Gumbsch, P. (ed.) Multiscale Materials Modeling, pp. 30–35. Fraunhofer IRB, Freiburg (2006)Google Scholar
  8. 8.
    Conti, S.: Quasiconvex functions incorporating volumetric constraints are rank-one convex. J. Math. Pures Appl. 90, 15–30 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Conti, S., Dolzmann, G.: Rank-one convexity of quasiconvex functions with determinant constraints (in preparation)Google Scholar
  10. 10.
    Conti, S., Dolzmann, G.: On the theory of relaxation in nonlinear elasticity with constraints on the determinant. Arch. Ration. Mech. Anal. 217, 413–437 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Conti, S., Dolzmann, G.: Relaxation in crystal plasticity with three active slip systems. Contin. Mech. Thermodyn. 28, 1477–1494 (2016)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Conti, S., Dolzmann, G.: Numerical study of microstructures in single-slip finite elastoplasticity. J. Optim. Theory Appl. (2018). Google Scholar
  13. 13.
    Conti, S., Dolzmann, G.: Optimal laminates in single-slip elastoplasticity. Disc. Cont. Dyn. Syst. Ser. (2019) (in press) Google Scholar
  14. 14.
    Conti, S., Dolzmann, G., Kreisbeck, C.: Asymptotic behavior of crystal plasticity with one slip system in the limit of rigid elasticity. SIAM J. Math. Anal. 43, 2337–2353 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Conti, S., Dolzmann, G., Kreisbeck, C.: Relaxation and microstructure in a model for finite crystal plasticity with one slip system in three dimensions. Discrete Contin. Dyn. Syst. Ser. 6, 1–16 (2013)MathSciNetzbMATHGoogle Scholar
  16. 16.
    Conti, S., Theil, F.: Single-slip elastoplastic microstructures. Arch. Ration. Mech. Anal. 178, 125–148 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Dacorogna, B.: Direct Methods in the Calculus of Variations. Applied Mathematical Sciences, vol. 78. Springer, Berlin (1989)CrossRefzbMATHGoogle Scholar
  18. 18.
    Davoli, E., Francfort, G.A.: A critical revisiting of finite elasto-plasticity. SIAM J. Math. Anal. 47(1), 526–565 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Fonseca, I.: The lower quasiconvex envelope of the stored energy function for an elastic crystal. J. Math. Pures Appl. 67, 175–195 (1988)MathSciNetzbMATHGoogle Scholar
  20. 20.
    Kochmann, D., Hackl, K.: The evolution of laminates in finite crystal plasticity: a variational approach. Contin. Mech. Thermodyn. 23, 63–85 (2011)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Kröner, E.: Allgemeine Kontinuumstheorie der Versetzungen und Eigenspannungen. Arch. Ration. Mech. Anal. 4, 273–334 (1960)MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Lee, E.H.: Elastic–plastic deformation at finite strains. J. Appl. Mech. 36, 1–6 (1969)ADSCrossRefzbMATHGoogle Scholar
  23. 23.
    Miehe, C., Lambrecht, M., Gürses, E.: Analysis of material instabilities in inelastic solids by incremental energy minimization and relaxation methods: evolving deformation microstructures in finite plasticity. J. Mech. Phys. Solids 52, 2725–2769 (2004)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Müller, S.: Variational models for microstructure and phase transitions. In: Bethuel F. et al. (eds.) Calculus of Variations and Geometric Evolution Problems. Springer Lecture Notes in Mathematics, vol. 1713, pp. 85–210. Springer (1999)Google Scholar
  25. 25.
    Müller, S., Šverák, V.: Convex integration with constraints and applications to phase transitions and partial differential equations. J. Eur. Math. Soc. 1, 393–442 (1999)MathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    Ortiz, M., Repetto, E.A.: Nonconvex energy minimization and dislocation structures in ductile single crystals. J. Mech. Phys. Solids 47(2), 397–462 (1999)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  27. 27.
    Reina, C., Conti, S.: Kinematic description of crystal plasticity in the finite kinematic framework: a micromechanical understanding of \(F=F^e F^p\). J. Mech. Phys. Solids 67, 40–61 (2014)ADSMathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Institut für Angewandte MathematikUniversität BonnBonnGermany
  2. 2.Fakultät für MathematikUniversität RegensburgRegensburgGermany

Personalised recommendations