Advertisement

A variational framework for the modeling of glassy polymers under finite strains

  • Jan-Michel C. Farias
  • Laurent Stainier
  • Eduardo Alberto FancelloEmail author
Original Article

Abstract

In this paper, a viscoelastic model able to capture important mechanical features of a wide class of glassy polymers is presented. Among them, the ability of reproducing the highly nonlinear rate-dependent stress response and the post-yield strain softening phenomenon. The simplicity of the proposition allows to recover the same mathematical structure of classical constitutive approaches, well suited for the use of implicit finite element codes. To this aim, the flow resistance concept, elsewhere known as shear strength, is reframed as a state variable of an accumulated strain measure. Three alternative expressions for this function are presented. The model is cast within a variational framework in which consistent constitutive updates are obtained by a minimization procedure. Convenient choices for the conservative and dissipative potentials reduce the local constitutive problem to the solution of a single nonlinear scalar equation, emulating the simplest case of viscoelastic models. Numerical tests on the constitutive model show excellent agreement with experimental data. Finally, a 3D simulation of a standard specimen with heterogeneous material properties illustrates the ability of the present proposition to be implemented in implicit finite element codes.

Keywords

Glassy polymers Variational principles Viscoelasticity Finite strain 

Notes

Acknowledgements

Eduardo A. Fancello and Jan-Michel C. Farias thank the financial support provided by CNPq-Brazil (Grant 313146/2017-9).

Compliance with ethical standards

Conflict of interest

The authors declare that there is no conflict of interest.

References

  1. 1.
    Kurtz, S.M., Devine, J.N.: PEEK biomaterials in trauma, orthopedic, and spinal implants. Biomaterials 28, 4845–4869 (2007)CrossRefGoogle Scholar
  2. 2.
    Smith, K.E., Temenoff, J.S., Gall, K.: On the toughness of photopolymerizable (meth)acrylate networks for biomedical applications. J. Appl. Polym. Sci. 114, 2711–2722 (2009)CrossRefGoogle Scholar
  3. 3.
    Ulery, B.D., Nair, L.S., Laurencin, C.T.: Biomedical applications of biodegradable polymers. J. Polym. Sci. B 49, 832–864 (2011)CrossRefGoogle Scholar
  4. 4.
    Miller, A.T., Safranski, D.L., Smith, K.E., Guldberg, R.E., Gall, K.: Compressive cyclic ratcheting and fatigue of synthetic, soft biomedical polymers in solution. J. Mech. Behav. Biomed. Mater. 54, 268–282 (2016)CrossRefGoogle Scholar
  5. 5.
    Spitzig, W.A., Richmond, O.: Effect of hydrostatic pressure on the deformation behavior of polyethylene and polycarbonate in tension and in compression. Polym. Eng. Sci. 19, 1129–1139 (1979)CrossRefGoogle Scholar
  6. 6.
    G’Sell, C., Hiver, J.M., Dahoun, A., Souahi, A.: Video-controlled tensile testing of polymers and metals beyond the necking point. J. Mater. Sci. 27, 5031–5039 (1992)ADSCrossRefGoogle Scholar
  7. 7.
    Arruda, E.M., Boyce, M.C., Jayachandran, R.: Effects of strain rate, temperature and thermomechanical coupling on the finite strain deformation of glassy polymers. Mech. Mater. 19, 193–212 (1995)CrossRefGoogle Scholar
  8. 8.
    Khan, A., Zhang, H.: Finite deformation of a polymer: experiments and modeling. Int. J. Plast. 17, 1167–1188 (2001)CrossRefzbMATHGoogle Scholar
  9. 9.
    Nakafuku, C., Takehisa, S.Y.: Glass transition and mechanical properties of PLLA and PDLLA-PGA copolymer blends. J. Appl. Polym. Sci. 93, 2164–2173 (2004)CrossRefGoogle Scholar
  10. 10.
    Khan, A.S., Lopez-Pamies, O., Kazmi, R.: Thermo-mechanical large deformation response and constitutive modeling of viscoelastic polymers over a wide range of strain rates and temperatures. Int. J. Plast. 22, 581–601 (2006)CrossRefzbMATHGoogle Scholar
  11. 11.
    Richeton, J., Ahzi, S., Vecchio, K.S., Jiang, F.C., Adharapurapu, R.R.: Influence of temperature and strain rate on the mechanical behavior of three amorphous polymers: characterization and modeling of the compressive yield stress. Int. J. Solids Struct. 43, 2318–2335 (2006)CrossRefGoogle Scholar
  12. 12.
    Dreistadt, C., Bonnet, A.S., Chevrier, P., Lipinski, P.: Experimental study of the polycarbonate behaviour during complex loadings and comparison with the Boyce, Parks and Argon model predictions. Mater. Des. 30, 3126–3140 (2009)CrossRefGoogle Scholar
  13. 13.
    Ames, N.M., Srivastava, V., Chester, S.A., Anand, L.: A thermo-mechanically coupled theory for large deformations of amorphous polymers. Part II: applications. Int. J. Plast. 25, 1495–1539 (2009)CrossRefzbMATHGoogle Scholar
  14. 14.
    Wright, D.D., Lautenschlager, E.P., Gilbert, J.L.: The effect of processing conditions on the properties of poly(methyl methacrylate) fibers. J. Biomed. Mater. Res. 63, 152–160 (2002)CrossRefGoogle Scholar
  15. 15.
    Viana, J.C., Alves, N.M., Mano, J.F.: Morphology and mechanical properties of injection molded poly(ethylene terephthalate). Polym. Eng. Sci. 44, 2174–2184 (2004)CrossRefGoogle Scholar
  16. 16.
    Holopainen, S.: Modeling of the mechanical behavior of amorphous glassy polymers under variable loadings and comparison with state-of-the-art model predictions. Mech. Mater. 66, 35–58 (2013)CrossRefGoogle Scholar
  17. 17.
    Gudimetla, M.R., Doghri, I.: A finite strain thermodynamically-based constitutive framework coupling viscoelasticity and viscoplasticity with application to glassy polymers. Int. J. Plast. 98, 197–216 (2017)CrossRefGoogle Scholar
  18. 18.
    Haward, R.N., Thackray, G.: The use of a mathematical model to describe isothermal stress–strain curves in glassy thermoplastics. Proc. R. Soc. Lond. A 302, 453–472 (1968)ADSCrossRefGoogle Scholar
  19. 19.
    Bagepalli, B.S.: Finite strain elastic-plastic deformation of glassy polymers. Ph.D. thesis, Massachusetts Institute of Technology (1984)Google Scholar
  20. 20.
    Boyce, M.C., Parks, D.M., Argon, A.S.: Large inelastic deformation of glassy polymers. Part I: rate dependent constitutive model. Mech. Mater. 7, 15–33 (1988)CrossRefGoogle Scholar
  21. 21.
    Anand, L., Gurtin, M.E.: A theory of amorphous solids undergoing large deformations, with application to polymeric glasses. Int. J. Solids Struct. 40, 1465–1487 (2003)CrossRefzbMATHGoogle Scholar
  22. 22.
    Poulain, X., Benzerga, A.A., Goldberg, R.K.: Finite-strain elasto-viscoplastic behavior of an epoxy resin: experiments and modeling in the glassy regime. Int. J. Plast. 62, 138–161 (2014)CrossRefGoogle Scholar
  23. 23.
    Srivastava, V., Chester, S.A., Ames, N.M., Anand, L.: A thermo-mechanically-coupled large-deformation theory for amorphous polymers in a temperature range which spans their glass transition. Int. J. Plast. 26, 1138–1182 (2010)CrossRefzbMATHGoogle Scholar
  24. 24.
    Ortiz, M., Stainier, L.: The variational formulation of viscoplastic constitutive updates. Comput. Methods Appl. Mech. Eng. 171, 419–44 (1999)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    Radovitzky, R., Ortiz, M.: Error estimation and adaptive meshing in strongly nonlinear dynamic problems. Comput. Methods Appl. Mech. Eng. 172, 203–240 (1999)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    Yang, Q., Stainier, L., Ortiz, M.: A variational formulation of the coupled thermo-mechanical boundary-value problem for general dissipative solids. J. Mech. Phys. Solids 54, 401–424 (2006)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  27. 27.
    Fancello, E.A., Ponthot, J.-P., Stainier, L.: A variational formulation of constitutive models and updates in non-linear finite viscoelasticity. Int. J. Numer. Methods Eng. 65, 1831–1864 (2006)CrossRefzbMATHGoogle Scholar
  28. 28.
    Mosler, J., Bruhns, O.T.: Towards variational constitutive updates for non-associative plasticity models at finite strain: models based on a volumetric-deviatoric split. Int. J. Solids Struct. 46, 1676–1684 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  29. 29.
    Mosler, J.: Variationally consistent modeling of finite strain plasticity theory with non-linear kinematic hardening. Comput. Methods Appl. Mech. Eng. 199, 2753–2764 (2010)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  30. 30.
    Kintzel, O., Mosler, J.: An incremental minimization principle suitable for the analysis of low cycle fatigue in metals: a coupled ductile-brittle damage model. Comput. Methods Appl. Mech. Eng. 200(45–46), 3127–3138 (2011)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  31. 31.
    El Sayed, T., Mota, A., Fraternali, F., Ortiz, M.: A variational constitutive model for soft biological tissues. J. Biomech. 41(7), 1458–66 (2008)CrossRefGoogle Scholar
  32. 32.
    Vassoler, J.M., Reips, L., Fancello, E.A.: A variational framework for fiber-reinforced viscoelastic soft tissues. Int. J. Numer. Methods Eng. 89, 1691–1706 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  33. 33.
    Stainier, L., Ortiz, M.: Study and validation of a variational theory of thermo mechanical coupling in finite visco-plasticity. Int. J. Solids Struct. 47, 705–715 (2010)CrossRefzbMATHGoogle Scholar
  34. 34.
    Miehe, C.: A multi-field incremental variational framework for gradient-extended standard dissipative solids. J. Mech. Phys. Solids 59, 898–923 (2011)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  35. 35.
    Stainier, L.: Consistent incremental approximation of dissipation pseudo-potentials in the variational formulation of thermo-mechanical constitutive updates. Mech. Res. Commun. 38, 315–319 (2011)CrossRefzbMATHGoogle Scholar
  36. 36.
    Bleier, N., Mosler, J.: Efficient variational constitutive updates by means of a novel parameterization of the flow rule. Int. J. Numer. Methods Eng. 89, 1120–1143 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  37. 37.
    Brassart, L., Stainier, L., Doghri, I., Delannay, L.: A variational formulation for the incremental homogenization of elasto-plastic composites. J. Mech. Phys. Solids 59, 2455–2475 (2011)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  38. 38.
    Brassart, L., Stainier, L., Doghri, I., Delannay, L.: Homogenization of elasto-(visco) plastic composites based on an incremental variational principle. Int. J. Plast. 36, 86–112 (2012)CrossRefzbMATHGoogle Scholar
  39. 39.
    Brassart, L., Stainier, L.: On convergence properties of variational constitutive updates for elasto-visco-plasticity. GAMM-Mitteilungen 35, 26–42 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  40. 40.
    Bartels, A., Bartel, T., Canadija, M., Mosler, J.: On the thermomechanical coupling in dissipative materials: a variational approach for generalized standard materials. J. Mech. Phys. Solids 82, 218–234 (2015)ADSMathSciNetCrossRefGoogle Scholar
  41. 41.
    Junker, P., Hackl, K.: A condensed variational model for thermo-mechanically coupled phase transformations in polycrystalline shape memory alloys. J. Mech. Behav. Mater. 22, 111–118 (2013)CrossRefGoogle Scholar
  42. 42.
    Lee, E.H.: Elastic plastic deformation at finite strain. ASME J. Appl. Mech. 36, 1–6 (1969)ADSCrossRefzbMATHGoogle Scholar
  43. 43.
    Anand, L., Ames, N.M.: On modeling the micro-indentation response of an amorphous polymer. Int. J. Plast. 22, 1123–1170 (2006)CrossRefzbMATHGoogle Scholar
  44. 44.
    Simo, J.C., Taylor, R.L., Pister, K.S.: Variational and projection methods for the volume constraint in finite deformation elasto-plasticity. Comput. Methods Appl. Mech. Eng. 51, 177–208 (1985)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  45. 45.
    Arruda, E.M., Boyce, M.C.: A three-dimensional constitutive model for the large stretch behavior of rubber elastic materials. J. Mech. Phys. Solids 41, 389–412 (1993)ADSCrossRefzbMATHGoogle Scholar
  46. 46.
    Gent, A.N.: A new constitutive relation for rubber. Rubber Chem. Technol. 69(1), 59–61 (1996)MathSciNetCrossRefGoogle Scholar
  47. 47.
    Ziegler, H.: An Introduction to Thermomechanics. Elsevier, Amsterdam (1977)zbMATHGoogle Scholar
  48. 48.
    Hill, R.: A general theory of uniqueness and stability in elastic-plastic solids. J. Mech. Phys. Solids 6, 236–249 (1958)ADSCrossRefzbMATHGoogle Scholar
  49. 49.
    Ceradini, G.: A maximum principle for the analysis of elastic–plastic systems. Meccanica 1, 77–82 (1966)CrossRefzbMATHGoogle Scholar
  50. 50.
    Maier, G.: Quadratic programming and theory of elastic-perfectly plastic structures. Meccanica 3, 236–249 (1968)MathSciNetzbMATHGoogle Scholar
  51. 51.
    Capurso, M., Maier, G.: Incremental elastoplastic analysis and quadratic optimization. Meccanica 5, 107–116 (1970)CrossRefzbMATHGoogle Scholar
  52. 52.
    Pereira, N.Z., Feijoo, R.A.: On kinematical minimum principles for rates and increments in plasticity. Meccanica 21, 23–29 (1986)MathSciNetCrossRefzbMATHGoogle Scholar
  53. 53.
    Martin, J.B., Reddy, B.D., Griffin, T.B., Bird, W.W.: Applications of mathematical programming concepts to incremental elastic–plastic analysis. Eng. Struct. 9, 171–176 (1987)CrossRefGoogle Scholar
  54. 54.
    Mosler, J., Ortiz, M.: Variational h-adaption in finite deformation elasticity and plasticity. Int. J. Numer. Methods Eng. 72, 505–523 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  55. 55.
    Mosler, J., Ortiz, M.: An error-estimate-free and remapping-free variational mesh refinement and coarsening method for dissipative solids at finite strains. Int. J. Numer. Methods Eng. 77, 437–450 (2009)CrossRefzbMATHGoogle Scholar
  56. 56.
    Weber, G., Anand, L.: Finite deformation constitutive equations and a time integration procedure for isotropic, hyperelastic-viscoplastic solids. Comput. Methods Appl. Mech. Eng. 79, 173–202 (1990)ADSCrossRefzbMATHGoogle Scholar
  57. 57.
    Dupaix, R.B., Boyce, M.C.: Finite strain behavior of poly(ethylene terephthalate) PET and poly(ethylene terephthalate)-glycol PETG. Polymer 46, 4827–4838 (2005)CrossRefGoogle Scholar
  58. 58.
    Dupaix, R.B.: Temperature and rate dependent finite strain behavior of poly(ethylene terephthalate) and poly(ethylene terephthalate)-glycol above the glass transition temperature. Ph.D. thesis, MIT (2003)Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Mechanical EngineeringFederal University of Santa CatarinaFlorianópolisBrazil
  2. 2.Research Institute in Civil and Mechanical Engineering (GeM - UMR6183 CNRS/ECN/UN)Ecole Centrale de NantesNantesFrance

Personalised recommendations