Advertisement

Numerical solutions to a microcontinuum model using WENO schemes

  • Armando MajoranaEmail author
  • Rita Tracinà
Original Article

Abstract

In this paper, we consider a one-dimensional Mindlin model describing linear elastic behaviour of isotropic materials with microstructural effects. After introducing the kinetic and the potential energy, we derive a system of equations of motion by means of the Euler–Lagrange equations. A class of exact solutions is obtained. They have a wave behaviour due to a good property of the potential energy. We transform the set of hyperbolic partial differential equations in a particular form, which makes clear how to impose boundary conditions correctly. Next numerical solutions are obtained by using a weighted essentially non-oscillatory finite difference scheme coupled by a total variation diminishing Runge–Kutta method. A comparison between exact and numerical solutions shows the robustness and the accuracy of the numerical scheme. A numerical example of solutions for an inhomogeneous material is also shown.

Keywords

Mindlin continuum Wave propagation Numerical solutions Finite differences 

Notes

Acknowledgements

The first author was partially supported by the Italian FIR project “Innovative techniques in computational mechanics based on high continuity interpolation for the integrated design of advanced structures” (Principal Investigator: Massimo Cuomo).

References

  1. 1.
    Abali, B.E., Müller, W.H., dell’Isola, F.: Theory and computation of higher gradient elasticity theories based on action principles. Arch. Appl. Mech. 87, 1495–1510 (2017)CrossRefGoogle Scholar
  2. 2.
    Auffray, N., dell’Isola, F., Eremeyev, V., Madeo, A., Rosi, G.: Analytical continuum mechanics à la hamilton-piola: least action principle for second gradient continua and capillary fluids. Math. Mech. Solids 20(4), 375–417 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Berezovski, A.: On the Mindlin microelasticity in one dimension. Mech. Res. Commun. 77, 60–64 (2016)CrossRefGoogle Scholar
  4. 4.
    Berezovski, A., Engelbrecht, J., Berezovski, M.: Waves in microstructured solids: a unified viewpoint of modeling. Acta Mech. 220, 349–363 (2011)CrossRefzbMATHGoogle Scholar
  5. 5.
    Berezovski, A., Giorgio, I., Corte, A.D.: Interfaces in micromorphic materials: wave transmission and reflection with numerical simulations. Math. Mech. Solids 21(1), 37–51 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Carcaterra, A., dell’Isola, F., Esposito, R., Pulvirenti, M.: Macroscopic description of microscopically strongly inhomogenous systems: a mathematical basis for the synthesis of higher gradients metamaterials. Arch. Ration. Mech. Anal. 218, 1239–1262 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Ciancio, D., Carol, I., Cuomo, M.: On inter-element forces in the fem-displacement formulation, and implications for stress recovery. Int. J. Numer. Meth. Eng. 66, 502–528 (2006)CrossRefzbMATHGoogle Scholar
  8. 8.
    dell’Isola, F., Cuomo, M., Greco, L., Della Corte, A.: Bias extension test for pantographic sheets: numerical simulations based on second gradient shear energies. J. Eng. Math. 103, 127–157 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    dell’Isola, F., Madeo, A., Placidi, L.: Linear plane wave propagation and normal transmission and reflection at discontinuity surfaces in second gradient 3d continua. ZAMM - Z. Angew. Math. Mech. 92(1), 52–71 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    dell’Isola, F., Rosa, L., Woźniak, C.: A micro-structured continuum modelling compacting fluid-saturated grounds: the effects of pore-size scale parameter. Acta Mech. 127, 165–182 (1998)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Dingreville, R., Robbins, J., Voth, T.E.: Wave propagation and dispersion in elasto-plastic microstructured materials. Int. J. Solids Struct. 51, 2226–2237 (2014)CrossRefGoogle Scholar
  12. 12.
    Engelbrecht, J., Berezovski, A.: Reflections on mathematical models of deformation waves in elastic microstructured solids. Math. Mech. Complex Syst. 3(1), 43–82 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Engelbrecht, J., Berezovski, A., Pastrone, F., Braun, M.: Waves in microstructured materials and dispersion. Philos. Mag. 85(33–35), 4127–4141 (2005)CrossRefzbMATHGoogle Scholar
  14. 14.
    Greco, L., Cuomo, M.: B-spline interpolation of Kirchhoff–Love space rods. Comput. Methods Appl. Mech. Eng. 256, 251–269 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Javili, A., dell’Isola, F., Steinmann, P.: Geometrically nonlinear higher-gradient elasticity with energetic boundaries. J. Mech. Phys. Solids 61, 2381–2401 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Jiang, G.S., Shu, C.W.: Efficient implementation of weighted ENO schemes. J. Comput. Phys. 126, 202–228 (1996)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    LeVeque, R.J.: Numerical Methods for Conservation Laws. Birkhäuser, Basel (1992)CrossRefzbMATHGoogle Scholar
  18. 18.
    Liu, X., Osher, S., Chan, T.: Weighted essentially non-oscillatory schemes. J. Comput. Phys. 115, 200–212 (1994)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Metrikine, A.V.: On causality of the gradient elasticity models. J. Sound Vib. 297(3–5), 727–742 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Millett, J.F.C., Gray III, G.T., Bourne, N.K.: Measurement of the shear strength of pure tungsten during one-dimensional shock loading. J. Appl. Phys. 101(3), 033520 (2007)CrossRefGoogle Scholar
  21. 21.
    Mindlin, R.D.: Micro-structure in linear elasticity. Arch. Ration. Mech. Anal. 16(1), 51–78 (1964)MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Peets, T., Tamm, K.: Dispersion analysis of wave motion in microstructured solids. In: IUTAM Symposium on Recent Advances of Acoustic Waves in Solids, pp. 349–354 (2010)Google Scholar
  23. 23.
    Placidi, L., Dell’Isola, F., Ianiro, N., Sciarra, G.: Variational formulation of pre-stressed solid-fluid mixture theory, with an application to wave phenomena. Eur. J. Mech. A. Solids 27, 582–606 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Placidi, L., Greve, R., Seddik, H., Faria, S.: Continuum-mechanical, anisotropic flow model for polar ice masses, based on an anisotropic flow enhancement factor. Contin. Mech. Therm. 22, 221–237 (2010)CrossRefzbMATHGoogle Scholar
  25. 25.
    Placidi, L., Hutter, K.: Thermodynamics of polycrystalline materials treated by the theory of mixtures with continuous diversity. Contin. Mech. Therm. 17(6), 409–451 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    Placidi, L., Rosi, G., Giorgio, I., Madeo, A.: Reflection and transmission of plane waves at surfaces carrying material properties and embedded in second-gradient materials. Math. Mech. Solids 19(5), 555–578 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  27. 27.
    Rosi, G., Placidi, L., Auffray, N.: On the validity range of strain-gradient elasticity: a mixed static-dynamic identification procedure. Eur. J. Mech. A. Solids 69, 179–191 (2018)MathSciNetCrossRefzbMATHGoogle Scholar
  28. 28.
    Rosi, G., Placidi, L., Nguyen, V.H., Naili, S.: Wave propagation across a finite heterogeneous interphase modeled as an interface with material properties. Mech. Res. Commun. 84, 43–48 (2017)CrossRefGoogle Scholar
  29. 29.
    Shu, C.W.: Essentially non-oscillatory and weighted essentially non-oscillatory schemes for hyperbolic conservation laws. In: Quarteroni, A. (ed.) Advanced Numerical Approximation of Nonlinear Hyperbolic Equations. Lecture Notes in Mathematics, pp. 325–432. Springer, Berlin (1998)CrossRefGoogle Scholar
  30. 30.
    Zhu, J., Shu, C.W.: A new type of multi-resolution WENO schemes with increasingly higher order of accuracy on triangular meshes. J. Comput. Phys. 392, 19–33 (2019)MathSciNetCrossRefGoogle Scholar
  31. 31.
    Zhuang, S., Ravichandran, G., Grady, D.E.: An experimental investigation of shock wave propagation in periodically layered composites. J. Mech. Phys. Solids 51(2), 245–265 (2003)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Mathematics and Computer ScienceUniversity of CataniaCataniaItaly

Personalised recommendations