Advertisement

A microsphere-based material model for open cell metal foams

  • T. Bleistein
  • A. JungEmail author
  • S. Diebels
Original Article
  • 2 Downloads

Abstract

Cellular materials, such as open cell metal foams, consist of a complex microstructure effecting the global material behaviour. The characterisation of the macroscopic material behaviour is complex and requires a multitude of different experiments. Material models that treat the metal foam as a continuum can describe the observed behaviour from the experiments, for example the yield surface. But for different metal foams, the experimental procedure has to be performed before the macroscopic material models can be adapted to the experimental results. Simulations with the entire microstructure lead to large computational effort and are not efficient for simulations on components. The aim of the present contribution is to describe the material behaviour on the macroscopic level with a material model explicitly related to the microscopic level. It is advantageous that the experimental effort for determining the macroscopic material behaviour is reduced by experiments on individual struts. The results of the experiments are described by 1D constitutive equations and are extended to a 3D material model achieved by generalising the 1D constitutive laws with a microsphere-based model. The macroscopic simulations are compared with tensile and compression tests on 10 ppi aluminium foams to validate the model.

Keywords

Open cell metal foams Multiscale modelling Numerical generalisation Finite element method Material modelling 

Notes

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Ashby, M.F., Evans, T., Fleck, N.A., Hutchinson, J., Wadley, H., Gibson, L.: Metal Foams: A Design Guide. Elsevier, Amsterdam (2000)Google Scholar
  2. 2.
    Baiarti, Z.: Microplane model for strain-controlled inelastic behaviour. In: Desai, C.S., Gallagher, R.H. (eds.) Mechanics of Engineering Materials. Wiley, Hoboken (1984)Google Scholar
  3. 3.
    Bažant, P., Oh, B.: Efficient numerical integration on the surface of a sphere. ZAMM J. Appl. Math. Mech./Zeitschrift für Angewandte Mathematik und Mechanik 66(1), 37–49 (1986)MathSciNetzbMATHGoogle Scholar
  4. 4.
    Bažant, Z.P., Caner, F.C., Carol, I., Adley, M.D., Akers, S.A.: Microplane model M4 for concrete. I: formulation with work-conjugate deviatoric stress. J. Eng. Mech. 126(9), 944–953 (2000)Google Scholar
  5. 5.
    Bažant, Z.P., Oh, B.H.: Microplane model for fracture analysis of concrete structures. Northwestern University Evanston Illinois Technological Institute, Technical report (1983)Google Scholar
  6. 6.
    Bažant, Z.P., Prat, P.C.: Microplane model for brittle-plastic material: I. Theory. J. Eng. Mech. 114(10), 1672–1688 (1988)Google Scholar
  7. 7.
    Bažant, Z.P., Xiang, Y., Prat, P.C.: Microplane model for concrete. I: stress–strain boundaries and finite strain. J. Eng. Mech. 122(3), 245–254 (1996)Google Scholar
  8. 8.
    Bier, W., Dariel, M., Frage, N., Hartmann, S., Michailov, O.: Die compaction of copper powder designed for material parameter identification. Int. J. Mech. Sci. 49(6), 766–777 (2007)Google Scholar
  9. 9.
    Bier, W., Hartmann, S.: A finite strain constitutive model for metal powder compaction using a unique and convex single surface yield function. Eur. J. Mech. A/Solids 25(6), 1009–1030 (2006)zbMATHGoogle Scholar
  10. 10.
    Bleistein, T., Diebels, S., Jung, A.: Parameter identification for open cell aluminium foams using inverse calculation. Arch. Appl. Mech. (2018) (submitted) Google Scholar
  11. 11.
    Bleistein, T., Jung, A., Diebels, S.: Multiscale characterisation and simulation of open cell metal foams. Proc. Appl. Math. Mech. (PAMM) (2018) (accepted) Google Scholar
  12. 12.
    Carol, I., Jirásek, M., Bažant, Z.: A thermodynamically consistent approach to microplane theory. Part I. Free energy and consistent microplane stresses. Int. J. Solids Struct. 38(17), 2921–2931 (2001)zbMATHGoogle Scholar
  13. 13.
    Carol, I., Jirásek, M., Bažant, Z.P.: A framework for microplane models at large strain, with application to hyperelasticity. Int. J. Solids Struct. 41(2), 511–557 (2004)zbMATHGoogle Scholar
  14. 14.
    Chen, Y., Das, R., Battley, M.: Effects of cell size and cell wall thickness variations on the strength of closed-cell foams. Int. J. Eng. Sci. 120, 220–240 (2017)zbMATHGoogle Scholar
  15. 15.
    Dell’Isola, F., Giorgio, I., Pawlikowski, M., Rizzi, N.: Large deformations of planar extensible beams and pantographic lattices: heuristic homogenization, experimental and numerical examples of equilibrium. Proc. R. Soc. A Math. Phys. Eng. Sci. 472(2185), 20150790 (2016)Google Scholar
  16. 16.
    Dell’Isola, F., Steigmann, D., Della Corte, A.: Synthesis of fibrous complex structures: designing microstructure to deliver targeted macroscale response. Appl. Mech. Rev. 67(6), 21 (2016)Google Scholar
  17. 17.
    Deshpande, V., Fleck, N.: Isotropic constitutive models for metallic foams. J. Mech. Phys. Solids 48(6), 1253–1283 (2000)zbMATHGoogle Scholar
  18. 18.
    Ehlers, W., Droste, A.: A continuum model for highly porous aluminium foam. Tech. Mech. 19(4), 341–350 (1999)Google Scholar
  19. 19.
    Ehlers, W., Mullerschon, H., Klar, O.: On the behaviour of aluminium foams under uniaxial and multiaxial loading. In: Metal Foams and Porous Metal Structures, pp. 255–262 (1999)Google Scholar
  20. 20.
    Freund, M.: Verallgemeinerung eindimensionaler Materialmodelle für die Finite-Elemente-Methode. Ph.D. thesis, Technische Universität Chemnitz (2012)Google Scholar
  21. 21.
    Freund, M., Ihlemann, J.: Generalization of one-dimensional material models for the finite element method. ZAMM J. Appl. Math. Mech./Zeitschrift für Angewandte Mathematik und Mechanik 90(5), 399–417 (2010)MathSciNetzbMATHGoogle Scholar
  22. 22.
    Göktepe, S., Miehe, C.: A micro–macro approach to rubber-like materials. Part III: the micro-sphere model of anisotropic Mullins-type damage. J. Mech. Phys. Solids 53(10), 2259–2283 (2005)MathSciNetzbMATHGoogle Scholar
  23. 23.
    Heinze, S., Bleistein, T., Düster, A., Diebels, S., Jung, A.: Experimental and numerical investigation of single pores for identification of effective metal foams properties. ZAMM J. Appl. Math. Mech./Zeitschrift für Angewandte Mathematik und Mechanik 98(5), 682–695 (2018)MathSciNetGoogle Scholar
  24. 24.
    Jigh, B.H.G., Toudeshky, H.H., Farsi, M.A.: Experimental and multi-scale analyses of open-celled aluminum foam with hole under compressive quasi-static loading. J. Alloys Compd. 695, 133–141 (2017)Google Scholar
  25. 25.
    Jung, A., Beex, L., Diebels, S., Bordas, S.P.A.: Open-cell aluminium foams with graded coatings as passively controllable energy absorbers. Mater. Des. 87, 36–41 (2015)Google Scholar
  26. 26.
    Jung, A., Diebels, S.: Hybrid metal foams: experimental observations and phenomenological modelling. Tech. Mech. 34(1), 12–22 (2014)Google Scholar
  27. 27.
    Jung, A., Diebels, S.: Microstructural characterisation and experimental determination of a multiaxial yield surface for open-cell aluminium foams. Mater. Des. 131(Supplement C), 252–264 (2017)Google Scholar
  28. 28.
    Jung, A., Wocker, M., Chen, Z., Seibert, H.: Microtensile testing of open-cell metal foams—experimental setup, micromechanical properties. Mater. Des. 88, 1021–1030 (2015)Google Scholar
  29. 29.
    Kader, M., Islam, M., Saadatfar, M., Hazell, P., Brown, A., Ahmed, S., Escobedo, J.: Macro and micro collapse mechanisms of closed-cell aluminium foams during quasi-static compression. Mater. Des. 118, 11–21 (2017)Google Scholar
  30. 30.
    Kuhl, E.: Numerische modelle für kohäsive reibungsmaterialien. Ph.D. thesis, Universität Stuttgart (2000)Google Scholar
  31. 31.
    Kuhl, E., Ramm, E.: On the linearization of the microplane model. Mech. Cohesive Frict. Mater. Int. J. Exp. Model. Comput. Mater. Struct. 3(4), 343–364 (1998)Google Scholar
  32. 32.
    Kuhl, E., Ramm, E.: Microplane modelling of cohesive frictional materials. Eur. J. Mech. Ser. A Solids 19, S121–S144 (2000)Google Scholar
  33. 33.
    Kuhl, E., Steinmann, P., Carol, I.: A thermodynamically consistent approach to microplane theory. Part II. Dissipation and inelastic constitutive modeling. Int. J. Solids Struct. 38(17), 2933–2952 (2001)zbMATHGoogle Scholar
  34. 34.
    Miehe, C., Göktepe, S.: A micro–macro approach to rubber-like materials. Part II: the micro-sphere model of finite rubber viscoelasticity. J. Mech. Phys. Solids 53(10), 2231–2258 (2005)MathSciNetzbMATHGoogle Scholar
  35. 35.
    Miehe, C., Göktepe, S., Lulei, F.: A micro–macro approach to rubber-like materials—part I: the non-affine micro-sphere model of rubber elasticity. J. Mech. Phys. Solids 52(11), 2617–2660 (2004)MathSciNetzbMATHGoogle Scholar
  36. 36.
    Misra, A., Poorsolhjouy, P.: Identification of higher-order elastic constants for grain assemblies based upon granular micromechanics. Math. Mech. Complex Syst. 3(3), 285–308 (2015)MathSciNetzbMATHGoogle Scholar
  37. 37.
    Mohr, O.: Welche Umstände bedingen die Elastizitätsgrenze und den Bruch eines Materials. Zeitschrift des Vereins Deutscher Ingenieure 46(1524–1530), 1572–1577 (1900)zbMATHGoogle Scholar
  38. 38.
    Su, B., Zhou, Z., Xiao, G., Wang, Z., Shu, X., Li, Z.: A pressure-dependent phenomenological constitutive model for transversely isotropic foams. Int. J. Mech. Sci. 120, 237–248 (2017)Google Scholar
  39. 39.
    Taylor, G.I.: Plastic strain in metals. J. Inst. Metals 62, 307–324 (1938)Google Scholar
  40. 40.
    Zienkiewicz, O.C., Taylor, R.L., Zienkiewicz, O.C., Taylor, R.L.: The Finite Element Method, vol. 36. McGraw-Hill, London (1977)zbMATHGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Applied MechanicsSaarland UniversitySaarbrückenGermany

Personalised recommendations