Advertisement

Thermomechanical characterization and modeling of fast-curing polyurethane adhesives

  • Rebecca JennrichEmail author
  • Alexander Lion
  • Michael Johlitz
  • Sarah Ernst
  • Klaus Dilger
  • Elisabeth Stammen
Original Article

Abstract

In the context of lightweight design and modern hybrid technologies, the importance of structural and soft adhesives in industrial applications is increasing. Therefore, this paper examines a relatively soft polyurethane adhesive characterized by showing nonlinear viscoelastic behavior at room temperature and enduring large deformations. It is well suited for applications under dynamic loadings and can compensate gap changes generated by materials with different thermal expansion coefficients. Theoretically, the examined one-component polyurethane adhesive can be cured either thermally or through humidity, resulting in the same mechanical characteristics. Comparing both curing reactions, humidity curing is much slower than thermal curing. The latter can be controlled through the temperature, which may be applied through heating rates of up to \(150\,\hbox {K}\,\hbox {min}^{-1}\). However, in comparison with metals polyurethane conducts the heat with a much smaller rate which results in high temperature gradients within the adhesive layer. This paper focuses on the modeling of a fast-curing polyurethane adhesive under consideration of the changes in density and thermomechanical material properties induced by thermal curing. Therefore, the material properties need to be observed throughout the thermal curing process, from the uncured fluid to the cured rubber material. In the long term, the accurate prediction of the materials behavior will ultimately facilitate the optimization of the curing process.

Keywords

Curing Caloric experiments Viscoelasticity Thermomechanics Material modeling Polyurethane 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

We would like to thank the Deutsche Forschungsgemeinschaft (DFG) (Grant No. LI696/17-1) for funding the research project from which this paper resulted.

References

  1. 1.
    Adolf, D.B., Chambers, R.S.: A thermodynamically consistent, nonlinear viscoelastic approach for modeling thermosets during cure. J. Rheol. 51(1), 23–50 (2007)ADSCrossRefGoogle Scholar
  2. 2.
    Deutsches Institut für Normung e.V.: DIN 51007 Thermische Analyse (TA), Differenzthermoanalyse (DTA) (1994)Google Scholar
  3. 3.
    Enns, J.B., Gillham, J.K.: Time-temperature-transformation (TTT) cure diagram: modeling the cure behavior of thermosets. J. Appl. Polym. Sci. 28(8), 2567–2591 (1983)CrossRefGoogle Scholar
  4. 4.
    Fournier, J., Williams, G., Duch, C., Aldridge, G.A.: Changes in molecular dynamics during bulk polymerization of an epoxide-amine system as studied by dielectric relaxation spectroscopy. Macromolecules 29(22), 7097–7107 (1996)ADSCrossRefGoogle Scholar
  5. 5.
    Grambow, A.: Bestimmung der Materialparameter gefüllter Elastomere in Abhängigkeit von Zeit, Temperatur und Beanspruchungszustand. Ph.D. thesis. RWTH Aachen (2002)Google Scholar
  6. 6.
    Hossain, M., Possart, G., Steinmann, P.: A finite strain framework for the simulation of polymer curing. Part I: elasticity. Comput. Mech. 44(5), 621–630 (2009a)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Hossain, M., Possart, G., Steinmann, P.: A small-strain model to simulate the curing of thermosets. Comput. Mech. 43(6), 769–779 (2009b)CrossRefzbMATHGoogle Scholar
  8. 8.
    Leistner, C., Hartmann, S., Abliz, D., Ziegmann, G.: Modeling and simulation of the curing process of epoxy resins using finite elements. Continuum Mech. Thermodyn. 1–24 (2018).  https://doi.org/10.1007/s00161-018-0708-9
  9. 9.
    Leistner, C., Hartmann, S., Wittrock, J., Bode, K.: Shrinkage behavior of araldite epoxy resin using archimedes’ principle. Polym. Test. 67, 409–416 (2018b)CrossRefGoogle Scholar
  10. 10.
    Liebl, C.: Viskoelastisch-viskoplastische Modellierung von Strukturklebstoffen während der Aushärtung. Ph.D. thesis. Bundeswehr University Munich (2014)Google Scholar
  11. 11.
    Lion, A.: Einführung in die lineare viskoelastizität. In: Beiträge zur Materialtheorie. A. Lion (2007)Google Scholar
  12. 12.
    Lion, A., Höfer, P.: On the phenomenological representation of curing phenomena in continuum mechanics. Arch. Mech. 59(1), 59–89 (2006)zbMATHGoogle Scholar
  13. 13.
    Mahnken, R.: Thermodynamic consistent modeling of polymer curing coupled to visco-elasticity at large strains. Int. J. Solids Struct. 50(13), 2003–2021 (2013)CrossRefGoogle Scholar
  14. 14.
    Pahl, M., Gleißle, W., Laun, H.M.: Praktische Rheologie der Kunststoffe und Elastomere. VDI-Gesellschaft Kunststofftechnik (1991)Google Scholar
  15. 15.
    Rabearison, N., Jochum, C., Grandidier, J.C.: A cure kinetics, diffusion controlled and temperature dependent, identification of the araldite ly556 epoxy. J. Mater. Sci. 46(3), 787–796 (2011)ADSCrossRefGoogle Scholar
  16. 16.
    Shutov, A.V., Landgraf, R., Ihlemann, J.: An explicit solution for implicit time stepping in finite strain viscoelasticity. Comput. Methods Appl. Mech. Eng. 265, 213–225 (2013)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Sourour, S., Kamal, M.R.: Differential scanning calorimetry of epoxy cure: isothermal cure kinetics. Thermochimica Acta 14, 41–59 (1976)CrossRefGoogle Scholar
  18. 18.
    Williams, M.L., Landel, R.F., Ferry, J.D.: The temperature dependence of relaxation mechanisms in amorphous polymers and other glass-forming liquids. J. Am. Chem. Soc. 77, 3701–3707 (1955)CrossRefGoogle Scholar
  19. 19.
    Yagimli, B.: Kontinuumsmechanische Betrachtung von Aushärtevorgängen. Ph.D. thesis. Bundeswehr University Munich (2013)Google Scholar
  20. 20.
    Yagimli, B., Lion, A.: Experimental investigations and material modelling of curing processes under small deformations. J. Appl. Math. Mech. 91(5), 342–359 (2011)zbMATHGoogle Scholar
  21. 21.
    Yeoh, O.H., Fleming, P.D.: A new attempt to reconcile the statistical and phenomenological theories of rubber elasticity. J. Polym. Sci. 35(12), 1919–1931 (1997)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Institute of MechanicsBundeswehr University MunichNeubibergGermany
  2. 2.Institute of Joining and WeldingTechnische Universität BraunschweigBrunswickGermany

Personalised recommendations