Microstructural observations supporting thermography measurements for short glass fibre thermoplastic composites under fatigue loading

  • L. LaiarinandrasanaEmail author
  • T. F. Morgeneyer
  • Y. Cheng
  • L. Helfen
  • V. Le Saux
  • Y. Marco
Original Article


This paper combines the infrared thermography and the computed laminography techniques to better understand the mechanisms of damage under fatigue for a short fibre-reinforced thermoplastic material. Depending on the experimental technique used, the measurement implies a “homogenization” of the values deduced over a prescribed volume. The real volume contributing to the thermal fields and thus the dissipated energy evaluated from thermography cannot be easily determined. The laminography technique provides precious insights for the determination of the dissipation fields, by providing a clearer view of the in-depth notch front profile as well as the local fibre orientation and by giving an idea of the volume change induced by porosity. In turn, the latter may affect the physical (thermal) constants used in the determination of the dissipated energy.


Fatigue Composites Thermography Tomography/laminography 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



  1. 1.
    Horst, J.J., Spoormaker, J.L.: Fatigue fracture mechanisms and fractography of short glass fibre reinforced polyamide 6. J. Mater. Sci. 32, 3641–3651 (1997)ADSCrossRefGoogle Scholar
  2. 2.
    Rolland, H., Saintier, N., Robert, G.: Damage mechanisms in short glass fibre reinforced thermoplastic during in situ microtomography tensile tests. Compos. Part B Eng. 90, 365–377 (2016)CrossRefGoogle Scholar
  3. 3.
    Horst, J.J., Salienko, N.V., Spoormaker, J.L.: Fibre-matrix debonding stress analysis for short fibre-reinforced materials with matrix plasticity, finite element modelling and experimental verification. Compos. Part A 29, 525–531 (1998)CrossRefGoogle Scholar
  4. 4.
    Bernasconi, A., Conrado, E., Hine, P.: An experimental investigation of the combined influence of notch size and fiber orientation on the fatigue strength of a short glass fiber reinforced polyamide 6. Polym. Test. 47, 12–21 (2015)CrossRefGoogle Scholar
  5. 5.
    Vincent, M., Griroud, T., CLarke, A., Eberhardt, C.: Description and modeling of fiber orientation in injection molding of fiber reinforced thermoplastics. Polymer 46, 6719–6725 (2005)CrossRefGoogle Scholar
  6. 6.
    Jégou, L., Marco, Y., Le Saux, V., Calloch, S.: Fast prediction of the wohler curve from heat build-up measurements on short fiber reinforced thermoplastic. Int. J. Fatigue 47, 259–267 (2012)CrossRefGoogle Scholar
  7. 7.
    Marco, Y., Le Saux, V., Jégou, L., Launay, A., Serrano, L., Raoult, I., Charrier, P.: Dissipation analysis of sfrp structural samples: thermomechanical analysis and comparison to numerical simulations. Int. J. Fatigue 67, 142–150 (2014)CrossRefGoogle Scholar
  8. 8.
    Serrano, L., Marco, Y., Le Saux, V., Robert, G., Charrier, P.: Fast prediction of the fatigue behaviour of short-fiber-reinforced thermoplastics based on heat build-up measurements: application to heterogeneous cases. Contin. Mech. Thermodyn. 29, 525–531 (2017)CrossRefzbMATHGoogle Scholar
  9. 9.
    Bull, D.J., Spearing, S.M., Sinclair, I., Helfen, L.: Three-dimensional assessment of low velocity impact damage in particle toughened composite laminates using micro-focus x-ray computed tomography and synchrotron radiation laminography. Compos. Part A 52, 62–69 (2013)CrossRefGoogle Scholar
  10. 10.
    Borstnar, G., Mavrogordato, M.N., Helfen, L., Sinclair, I., Spearing, S.M.: Interlaminar fracture micro-mechanisms in toughened carbon fibre reinforced plastics investigated via synchrotron radiation computed tomography and laminography. Compos. Part A 71, 176–183 (2015)CrossRefGoogle Scholar
  11. 11.
    Cheng, Y., Laiarinandrasana, L., Helfen, L., Proudhon, H., Klinkova, O., Baumbach, T., Morgeneyer, T.F.: 3d damage micromechanisms in polyamide 6 ahead of a severe notch studied by in situ synchrotron laminography. Macromol. Chem. Phys. 217((5), 701–715 (2016)CrossRefGoogle Scholar
  12. 12.
    Broudin, M., Le Gac, P.Y., Le Saux, V., Champy, C., Robert, G., Charrier, P., Marco, Y.: Water diffusivity in PA66: experimental characterization and modeling based on free volume theory. Eur. Polym. J. 67, 326–334 (2015)CrossRefGoogle Scholar
  13. 13.
    Peterson, R.E.: Stress Concentration Factors. Wiley, New York (1974)Google Scholar
  14. 14.
    Inglis, C.E.: Stresses in a plate due to the presence of cracks and sharp corners. Engineering (London) 95, 415 (1913)Google Scholar
  15. 15.
    Koiter, W.T.: Note on the stress intensity factors for sheets strips with cracks under tensile loads. Report 314 of Laboratory of Engr. Mechanics, Technological University, Delft, Holland (1965)Google Scholar
  16. 16.
    Ayadi, A., Nouri, H., Guessasma, S., Roger, F.: Determination of orthotropic properties of glass fibre reinforced thermoplastics using X-ray tomography and multiscale finite element computation. Compos. Struct. 136, 635–649 (2016)CrossRefGoogle Scholar
  17. 17.
    Doudard, C., Calloch, S., Hild, F., Cugy, P., Galtier, A.: Identification of scatter in high cycle fatigue from temperature measurements. Comptes Rendus Mécanique 10, 795–801 (2004)ADSCrossRefGoogle Scholar
  18. 18.
    Le Saux, V., Doudard, C.: Proposition of a compensated pixelwise calibration for photonic infrared cameras and comparison to classical calibration procedures: case of thermoelastic stress analysis. Infrared Phys. Technol. 80, 83–92 (2017)ADSCrossRefGoogle Scholar
  19. 19.
    Helfen, L., Baumbach, T., Mikulík, P., Kiel, D., Pernot, P., Cloetens, P., Baruchel, J.: High-resolution three-dimensional imaging of flat objects by synchrotron-radiation computed laminography. Appl. Phys. Lett. 86, 071915 (2005)ADSCrossRefGoogle Scholar
  20. 20.
    Helfen, L., Baumbach, T., Cloetens, P., Baruchel, J.: Phase-contrast and holographic computed laminography. Appl. Phys. Lett. 94, 104103 (2009)ADSCrossRefGoogle Scholar
  21. 21.
    Ueda, T., Helfen, L., Morgeneyer, T.F.: In-situ laminography study of three-dimensional individual void shape evolution at crack initiation and comparison with GTN-type simulations. Acta Mater. 78C, 254–270 (2014)CrossRefGoogle Scholar
  22. 22.
    Rack, A., Weitkamp, T., Trabelsi, S.Bauer, Modregger, P., Cecilia, A., Rolo, T dos Santos, Rack, T., Haas, D., Simon, R., Heldele, R., Schulz, M., Mayzel, B., Danilewsky, A.N., Waterstradt, T., Diete, W., Riesemeier, H., Müller, B.R., Baumbach, T.: The micro-imaging station of the TopoTomo beamline at the ANKA synchrotron light source. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interactions Mater. Atoms 267(11), 1978–1988 (2009)ADSCrossRefGoogle Scholar
  23. 23.
    Douissard, P.A., Cecilia, A., Rochet, X., Chapel, X., Martin, T., van de Kamp, T., Helfen, L., Baumbach, T., Luquot, L., Xiao, X., Meinhardt, J., Rack, A.: A versatile indirect detector design for hard x-ray microimaging. J. Instrum. 7(09), P09016 (2012)CrossRefGoogle Scholar
  24. 24.
    Myagotin, A., Voropaev, A., Helfen, L., Hänschke, D., Baumbach, T.: Efficient volume reconstruction for parallel-beam computed laminography by filtered backprojection on multi-core clusters. IEEE Trans. Image Process. 22, 5348–5361 (2013)ADSCrossRefGoogle Scholar
  25. 25.
    Lemaitre, J., Chaboche, J.L.: Mechanics of Solid Materials. Cambridge University Press, Cambridge (1990)CrossRefzbMATHGoogle Scholar
  26. 26.
    Masquelier, I., Marco, Y., Le Saux, V., Calloch, S., Charrier, P.: Determination of dissipated energy from temperature mappings on a rubber-like materials: experiments and comparison to numerical simulations. Mech. Mater. 80, 113–123 (2015)CrossRefGoogle Scholar
  27. 27.
    Chrysochoos, A.: Thermomechanical analysis of the cyclic behavior of materials. Procedia IUTAM 4, 15–26 (2012)CrossRefGoogle Scholar
  28. 28.
    Brusselle-Dupend, N., Rosenberg, E., Adrien, J.: Characterization of cavitation development while tensile testing PVF2 using 3D X-ray microtomography. J. Mater. Sci. Eng. A 530, 36–50 (2011)CrossRefGoogle Scholar
  29. 29.
    Morgeneyer, T.F., Proudhon, H., Cloetens, P., Ludwig, W., Roirand, Q., Laiarinandrasana, L., Maire, E.: Nanovoid morphology and distribution in deformed hdpe studied by magnified synchrotron radiation holotomography. Polymer 55, 6439–6443 (2014)CrossRefGoogle Scholar
  30. 30.
    Laiarinandrasana, L., Klinkova, O., Morgeneyer, T.F., Proudhon, H., Nguyen, F., Ludwig, W.: Three dimensional quantification of the anisotropic void evolution in deformed semi-crystalline polyamide 6. Int. J. Plast. 83, 19–36 (2016)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • L. Laiarinandrasana
    • 1
    Email author
  • T. F. Morgeneyer
    • 1
  • Y. Cheng
    • 2
  • L. Helfen
    • 2
    • 3
  • V. Le Saux
    • 4
  • Y. Marco
    • 4
  1. 1.Centre des Matériaux, CNRS UMR 7633MINES ParisTech - PSL Research UniversityEvry CedexFrance
  2. 2.European Synchrotron Radiation Facility (ESRF)Grenoble CedexFrance
  3. 3.Karlsruhe Institute of Technology (KIT)Institute for Photon Science and Synchrotron Radiation (IPS)Eggenstein-LeopoldshafenGermany
  4. 4.UMR CNRS 6027, IRDLENSTA BretagneBrestFrance

Personalised recommendations