Advertisement

Modelling the curing process in particle-filled electro-active polymers with a dispersion anisotropy

  • Mokarram HossainEmail author
Original Article
  • 19 Downloads

Abstract

Even for a moderate actuation, a large electric voltage requirement hinders the application of electro-active polymers (EAPs) in many areas. Hence, among other mechanisms, the actuation enhancement in EAPs is performed via inclusions of high-dielectric-permittivity fillers in the matrix material in the uncured stage. Moreover, to obtain an optimum advantage from the high-dielectric-permittivity fillers, an electric field can be applied during the curing process which helps the particles to align in a preferred direction. To be specific, recent experimental evidences show that these particles form a dispersed anisotropy rather than a perfect transverse anisotropic structure. The polymer curing process is a complex (visco-) elastic phenomenon where a liquid polymer gradually transforms into a solid macromolecular structure due to cross-linking of the initial solution of short polymer chains. This phase transition comes along with an increase in the material stiffness and a volume shrinkage. In this paper we present a phenomenologically inspired large strain framework for simulating the curing process of particle-filled electro-active polymers with a dispersion-type anisotropy that can work under the influence of an electro-mechanically coupled load. The application of the proposed approach is demonstrated with some numerical examples. These examples illustrate that the model can predict common features in particle-filled dispersed electro-active polymers undergoing curing processes in the presence of an electro-mechanically coupled load.

Keywords

Electro-active polymers Polymer curing Electro-mechanically coupled problem Dispersion anisotropy Electro-elasticity Curing shrinkage 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

References

  1. 1.
    Adolf, D.B., Martin, J.E., Chambers, R.S., Burchett, S.N., Guess, T.N.: Stresses during thermoset cure. J. Mater. Res. 13, 530–550 (1998)ADSGoogle Scholar
  2. 2.
    Alastrue, V., Martinez, M., Doblare, M., Menzel, M.: Anisotropic micro-sphere-based finite elasticity applied to blood vessel modeling. Int. J. Mech. Phys. Solids 57, 178–203 (2009)ADSzbMATHGoogle Scholar
  3. 3.
    Ask, A., Menzel, A., Ristinma, M.: Phenomenological modeling of viscous electrostrictive polymers. Int. J. Nonlinear Mech. 47(2), 156–165 (2012)ADSGoogle Scholar
  4. 4.
    Bazant, Z.P., Oh, B.H.: Efficient numerical integration on the surface of a sphere. Z. Angew. Math. Mech. 66, 37–49 (1986)MathSciNetzbMATHGoogle Scholar
  5. 5.
    Büschel, A., Klinkel, S., Wagner, W.: Dielectric elastomers—numerical modeling of nonlinear visco-elasticity. Int. J. Numer. Methods Eng. 93, 834–856 (2013)zbMATHGoogle Scholar
  6. 6.
    Bustamante, B.: Transversely isotropic nonlinear electro-active elastomers. Acta Mech. 206(3–4), 237–259 (2009)zbMATHGoogle Scholar
  7. 7.
    Carpi, F., Rossi, D.D.: Improvement of electromechanical actuating performances of a silicone dielectric elastomer by dispersion of titanium dioxide powder. IEEE Trans. Dielectr. Electr. Insul. 12, 835–843 (2005)Google Scholar
  8. 8.
    Carpi, F., Gallone, G., Galantini, F., Rossi, D.D.: Silicone-poly(hexylthiophene) blends as elastomers with enhanced electromechanical transduction properties. Adv. Funct. Mater. 18, 235–241 (2008)Google Scholar
  9. 9.
    Cortes, D.H., Lake, S.P., Kadlowec, J.A., Soslowsky, L.J., Elliot, D.M.: Characterizing the mechanical contribution of fiber angular distribution in connective tissue: comparison of two modeling approaches. Biomech. Model Mechanobiol. 9, 651–658 (2010)Google Scholar
  10. 10.
    Dorfmann, A., Ogden, R.W.: Nonlinear electroelasticity. Acta Mech. 174(3), 167–183 (2005)zbMATHGoogle Scholar
  11. 11.
    Dorfmann, L., Ogden, R.W.: Nonlinear electroelasticity: material properties, continuum theory and applications. Proc. R. Soc. A 473, 20170311 (2017)ADSMathSciNetzbMATHGoogle Scholar
  12. 12.
    Diaconu, I., Dorohoi, D.O., Ciobanu, C.: Eletromechanical response of polyurethane films with different thickness. Roman. J. Phys. 53(1–2), 91–97 (2008)Google Scholar
  13. 13.
    Dang, Z.M., Yuan, J.K., Zha, J.W., Zhou, T., Li, S.T., Hu, G.H.: Fundamentals, processes and applications of high-permittivity polymer-matrix composites. Prog. Mater. Sci. 57, 660–723 (2012)Google Scholar
  14. 14.
    Dal, H., Zopf, C., Kaliske, M.: Micro-sphere based viscoplastic constitutive model for uncured green rubber. Int. J. Solids Struct. 132–133, 201–217 (2018)Google Scholar
  15. 15.
    Dal, H., Kaliske, M.: A micro-continuum-mechanical material model for failure of rubber-like materials: application to ageing-induced fracturing. Int. J. Mech. Phys. Solids 57(8), 1340–1356 (2009)ADSzbMATHGoogle Scholar
  16. 16.
    Dal, H., Cansiz, B., Miehe, C.: A three-scale compressible microsphere model for hyperelastic materials. Int. J. Numer. Methods Eng. 116, 412–433 (2018)MathSciNetGoogle Scholar
  17. 17.
    Ehret, A.E., Itskov, M., Schmid, H.: Numerical integration on the sphere and its effect on the material symmetry of constitutive equations—a comparative study. Int. J. Numer. Methods Eng. 81, 189–206 (2010)zbMATHGoogle Scholar
  18. 18.
    Fliege, J., Maier, U.: The distribution of points on the sphere and corresponding cubature formulae. IMA J. Numer. Anal. 19(2), 317–334 (1999)MathSciNetzbMATHGoogle Scholar
  19. 19.
    Gallone, G., Carpi, F., Rossi, D.D., Levita, G., Marchetti, A.: Dielectric constant enhancement in a silicone elastomer filled with lead magnesium niobate-leads titanate. Mater. Sci. Eng. C 27, 110–1162 (2007)Google Scholar
  20. 20.
    Gillen, K.T.: Effect of cross-links which occur during continuous chemical stress-relaxation. Macromolecules 21, 442–446 (1988)ADSGoogle Scholar
  21. 21.
    Hossain, M., Possart, G., Steinmann, P.: A small-strain model to simulate the curing of thermosets. Comput. Mech. 43, 769–779 (2009a)zbMATHGoogle Scholar
  22. 22.
    Hossain, M., Possart, G., Steinmann, P.: A finite strain framework for the simulation of polymer curing. Part I: elasticity. Comput. Mech. 44(5), 621–630 (2009b)MathSciNetzbMATHGoogle Scholar
  23. 23.
    Hossain, M., Possart, G., Steinmann, P.: A finite strain framework for the simulation of polymer curing. Part II: viscoelasticity and shrinkage. Comput. Mech. 46(3), 363–375 (2010)zbMATHGoogle Scholar
  24. 24.
    Hossain, M., Steinmann, P.: Degree of cure-dependent modelling for polymer curing processes at small-strain. Part I: consistent reformulation. Comput. Mech. 53(4), 777–787 (2014)MathSciNetzbMATHGoogle Scholar
  25. 25.
    Hossain, M., Steinmann, P.: Continuum physics of materials with time-dependent properties: reviewing the case of polymer curing. Adv. Appl. Mech. 48, 141–259 (2015)Google Scholar
  26. 26.
    Hossain, M., Saxena, P., Steinmann, P.: Modelling the mechanical aspects of the curing process of magneto-sensitive elastomeric materials. Int. J. Solids Struct. 58, 257–269 (2015)Google Scholar
  27. 27.
    Hossain, M., Saxena, P., Steinmann, P.: Modelling the curing process in magneto-sensitive materials: rate-dependence and shrinkage. Int. J. Nonlinear Mech. 74, 108–121 (2015)ADSGoogle Scholar
  28. 28.
    Hossain, M., Chatzigeorgiou, G., Meraghni, F., Steinmann, P.: A multi-scale approach to model the curing process in magneto-sensitive polymeric materials. Int. J. Solids Struct. 69–70, 34–44 (2015)Google Scholar
  29. 29.
    Hossain, M., Vu, D.K., Steinmann, P.: Experimental study and numerical modelling of VHB 4910 polymer. Comput. Mater. Sci. 59, 65–74 (2012)Google Scholar
  30. 30.
    Hossain, M., Vu, D.K., Steinmann, P.: A comprehensive characterization of the electro-mechanically coupled properties of VHB 4910 polymer. Arch. Appl. Mech. 85(4), 523–537 (2014)Google Scholar
  31. 31.
    Hossain, M., Steinmann, P.: Modelling electro-active polymers with a dispersion-type anisotropy. Smart Mater. Struct. 27(2), 1–17 (2018)Google Scholar
  32. 32.
    Heinrich, C., Aldridge, M., Wineman, A.S., Kieffer, J., Waas, A.M., Shahwan, K.W.: The role of curing stresses in subsequent response, damage and failure of textile polymer composites. J. Mech. Phys. Solids 61, 1241–1264 (2013)ADSMathSciNetGoogle Scholar
  33. 33.
    Horgan, C.O., Saccomandi, G.: Constitutive models for compressible nonlinearly elastic materials with limiting chain extensibility. J. Elast. 77, 123–138 (2004)MathSciNetzbMATHGoogle Scholar
  34. 34.
    Itskov, M.: On the accuracy of numerical integration over the unit sphere applied to full network models. Comput. Mech. 57(5), 859–865 (2016)MathSciNetzbMATHGoogle Scholar
  35. 35.
    Itskov, M., Khiem, V.N., Waluyo, S.: Electroelasticity of dielectric elastomers based on molecular chain statistics. Math. Mech. Solids (2018).  https://doi.org/10.1177/1081286518755846 Google Scholar
  36. 36.
    Johlitz, M., Steeb, H., Diebels, S., Chatzouridou, A., Batal, J., Possart, W.: Experimental and theoretical investigation of nonlinear viscoelastic polyurethane systems. J. Mater. Sci. 42, 9894–9904 (2007)ADSGoogle Scholar
  37. 37.
    Koh, S.J.A., Keplinger, C., Li, T., Bauer, S., Suo, Z.: Dielectric elastomer generators: how much energy can be converted? IEEE/ASME Trans Mechatron 16(1), 33–41 (2011)Google Scholar
  38. 38.
    Kashani, M.R., Javadi, S., Gharavi, N.: Dielectric properties of silicone rubber-titanium dioxide composites prepared by dielectrophoretic assembly of filler particles. Smart Mater. Struct. 19, 1–7 (2010)Google Scholar
  39. 39.
    Kussmaul, B., Risse, S., Kofod, G., Wache, R., Wegener, M., McCarthy, D.N., Krueger, H., Gerhard, R.: Enhancement of dielectric permittivity and electromechanical response in silicone elastomers: molecular grafting of organic dipoles to the macromolecular network. Adv. Funct. Mater. 21, 4589–4594 (2011)Google Scholar
  40. 40.
    Keip, M.A., Steinmann, P., Schröder, J.: Two-scale computational homogenization of electro-elasticity at finite strains. Comput. Methods Appl. Mech. Eng. 278, 62–79 (2014)ADSMathSciNetzbMATHGoogle Scholar
  41. 41.
    Kiasat, M.: Curing Shrinkage and Residual Stresses in Viscoelastic Thermosetting Resins and Composites. TU Delft, Delft (2000). PhD ThesisGoogle Scholar
  42. 42.
    Landgraf, R., Scherzer, R., Rudolph, M., Ihlemann, J.: Modelling and simulation of adhesive curing processes in bonded piezo metal composites. Comput. Mech. 54(2), 547–565 (2014)zbMATHGoogle Scholar
  43. 43.
    Landgraf, R.: Modeling and simulation of the curing of polymeric materials. Ph.D. dissertation, TU Chemnitz, Germany (2015)Google Scholar
  44. 44.
    Lion, A., Höfer, P.: On the phenomenological representation of curing phenomena in continuum mechanics. Arch. Mech. 59, 59–89 (2007)zbMATHGoogle Scholar
  45. 45.
    Liu, B., Shaw, M.T.: Electrorheology of filled silicone elastomers. J. Rheol. 45, 641–657 (2011)ADSGoogle Scholar
  46. 46.
    Mehnert, M., Hossain, M., Steinmann, P.: On nonlinear thermo-electro-elasticity. Proc. R. Soc. A 472(2190), 20160170 (2016)ADSMathSciNetzbMATHGoogle Scholar
  47. 47.
    Monk, P.: Finite Element Methods for Maxwell Equations. Oxford University Press, Oxford (2003)zbMATHGoogle Scholar
  48. 48.
    Molberg, M., Crespy, D., Rupper, P., Nesch, F., Manson, J.A.E., Loewe, C., Opris, D.M.: High breakdown field dielectric elastomer actuators using encapsulated polyaniline as high dielectric constant filler. Adv. Funct. Mater. 20, 3280–3291 (2010)Google Scholar
  49. 49.
    Miehe, C., Göktepe, S., Lulei, F.: A micro–macro approach to rubber-like materials: part I, the non-affine micro-sphere model of rubber elasticity. J. Mech. Phys. Solids 52, 2617–2660 (2004)ADSMathSciNetzbMATHGoogle Scholar
  50. 50.
    Mahnken, R.: Thermodynamic consistent modeling of polymer curing coupled to viscoelasticity at large strains. Int. J. Solids Struct. 50(13), 2003–2021 (2013)Google Scholar
  51. 51.
    Nateghi, A., Dal, H., Keip, M.A., Miehe, C.: An affine microsphere approach to modeling strain-induced crystallization in rubbery polymers. Contin. Mech. Thermodyn. 30(3), 485–507 (2018)MathSciNetzbMATHGoogle Scholar
  52. 52.
    Opris, D.M., Molberg, M., Walder, C., Ko, Y.S., Fischer, B., Nuesch, F.A.: New silicone composites for dielectric elastomer actuator applications in competition with acrylic foil. Adv. Funct. Mater. 21, 3531–3539 (2011)Google Scholar
  53. 53.
    Oliva-Aviles, A.I., Aviles, F., Sosa, V.: Electrical and piezoresistive properties of multi-walled carbon nanotube/polymer composite films aligned by an electric field. Carbon 49, 2989–2997 (2011)Google Scholar
  54. 54.
    Pandolfi, A., Vasta, M.: Fiber distributed hyper elastic modelling of biological tissues. Mech. Mater. 44, 151–162 (2012)Google Scholar
  55. 55.
    Brochu, P., Pei, Q.: Advances in dielectric elastomers for actuators and artificial muscles. Macromol. Rapid Commun. 31, 10–36 (2010)Google Scholar
  56. 56.
    Reese, S., Govindjee, S.: A theory of finite viscoelasticity and numerical aspects. Int. J. Solids Struct. 35, 3455–3482 (1998)zbMATHGoogle Scholar
  57. 57.
    Risse, S., Kussmaul, B., Krueger, H., Kofod, G.: Synergistic improvement of actuation properties with compatibilized high permittivity filler. Adv. Funct. Mater. 22, 3958–3962 (2012)Google Scholar
  58. 58.
    Risse, S., Kussmaul, B., Krueger, H., Kofod, G.: A versatile method for enhancement of electromechanical sensitivity of silicone elastomers. RSC Adv. 2, 9029–9035 (2012)Google Scholar
  59. 59.
    Romasanta, L.J., Lopez-Manchado, M.A., Verdejo, R.: Increasing the performance of dielectric elastomer actuators: a review from the materials perspective. Prog. Polym. Res. 51, 188–211 (2014)Google Scholar
  60. 60.
    Steinmann, P., Hossain, M., Possart, G.: Hyperelastic models for rubber-like materials: consistent tangent operators and suitability of Treloar’s data. Arch. Appl. Mech. 82(9), 1183–1217 (2012)ADSzbMATHGoogle Scholar
  61. 61.
    Spencer, A.J.M.: Theory of invariants. In: Eringen, A.C. (ed.) Continuum Physics, vol. 1, pp. 239–353. Academic, New York (1971)Google Scholar
  62. 62.
    Saxena, P., Vu, D.K., Steinmann, P.: On rate-dependent dissipation effects in electro-elasticity. Int. J. Nonlinear Mech. 62, 1–11 (2014)ADSGoogle Scholar
  63. 63.
    Saxena, P., Pelteret, J.-P., Steinmann, P.: Modelling of iron-filled magneto-active polymers with a dispersed chain-like microstructure. Eur. J. Mech. A Solids 50, 132–151 (2015)ADSMathSciNetzbMATHGoogle Scholar
  64. 64.
    Skacel, P., Bursa, J.: Comparison of constitutive models of arterial layers with distributed collagen fibre orientations. Acta Bioeng. Biomech. 16(3), 47–58 (2014)Google Scholar
  65. 65.
    Tomer, V., Randall, C.A.: High field dielectric properties of anisotropic polymer-ceramic composites. J Appl Phys 104, 074106/1–074106/7 (2008)ADSGoogle Scholar
  66. 66.
    Thylander, S.: Microsphere-based modeling of electro-active polymers. Ph.D. dissertation, Lund University, Sweden (2016)Google Scholar
  67. 67.
    Vogel, F.: On the modeling and computation of electro- and magneto-active polymers. Ph.D. dissertation, Friedrich-Alexander-University Erlangen-Nuremberg, Germany (2014)Google Scholar
  68. 68.
    Vu, D.K., Steinmann, P.: Numerical modeling of non-linear electroelasticity. Int. J. Numer. Methods Eng. 70, 685–704 (2007)zbMATHGoogle Scholar
  69. 69.
    Wissler, M., Mazza, E.: Mechanical behavior of an acrylic elastomer used in dielectric elastomer actuators. Sens. Actuators A 134, 494–504 (2007)Google Scholar
  70. 70.
    Yang, Ta-I, Kofinas, P.: Dielectric properties of polymer nanoparticle composites. Polymer 48, 791–798 (2009)Google Scholar
  71. 71.
    Womersley, R.S.: Interpolation and cubature on the sphere—UNSW Sydney. https://web.maths.unsw.edu.au/~rsw/Sphere/. Accessed 11 June 2017

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Zienkiewicz Centre for Computational Engineering, College of EngineeringSwansea UniversitySwanseaUK

Personalised recommendations