Advertisement

Reflection of plane waves in thermoelastic microstructured materials under the influence of gravitation

  • S. M. Abo-Dahab
  • Adnan Jahangir
  • Abo-el-nour N. Abd-allaEmail author
Original Article
  • 15 Downloads

Abstract

This paper presents an analysis of wave propagation in a microstretch elastic medium in the context of the Green–Naghdi (GN) theory. Moreover, the dissipation and the influence of gravity on reflected waves have also been investigated. In the present article, five reflected waves propagate into the medium for any incident wave. The problem is solved numerically, and the amplitude ratios are graphically represented allowing for a comparison between the simple GN theory and the case in which one considers the effect of gravity on waves.

Keywords

Generalized thermoelasticity Gravitational effect Microstretch Reflection 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

References

  1. 1.
    Green, A.E., Naghdi, P.M.: A general theory of an elastic–plastic continuum. Arch. Ration. Mech. Anal. 18(4), 251–281 (1965)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Battista, A., Della Corte, A., dell’Isola, F., Seppecher, P.: Large deformations of 1D microstructured systems modeled as generalized Timoshenko beams. Zeitschrift für angewandte Mathematik und Physik 69(3), 52 (2018)ADSMathSciNetCrossRefGoogle Scholar
  3. 3.
    Rosi, G., Placidi, L., dell’Isola, F.: "Fast" and "slow" pressure waves electrically induced by nonlinear coupling in Biot-type porous medium saturated by a nematic liquid crystal. Zeitschrift für angewandte Mathematik und Physik 68(2), 51 (2017)ADSMathSciNetCrossRefGoogle Scholar
  4. 4.
    Andreaus, U., Spagnuolo, M., Lekszycki, T., Eugster, S.R.: A Ritz approach for the static analysis of planar pantographic structures modeled with nonlinear Euler–Bernoulli beams. Contin. Mech. Thermodyn. 30, 1103–1123 (2018)ADSMathSciNetCrossRefGoogle Scholar
  5. 5.
    Spagnuolo, M., Barcz, K., Pfaff, A., dell’Isola, F., Franciosi, P.: Qualitative pivot damage analysis in aluminum printed pantographic sheets: numerics and experiments. Mech. Res. Commun. 83, 47–52 (2017)CrossRefGoogle Scholar
  6. 6.
    dell’Isola, F., Seppecher, P., Alibert, J. J., Lekszycki, T., Grygoruk, R., Pawlikowski, M., Gołaszewski, M.: Pantographic metamaterials: an example of mathematically driven design and of its technological challenges. Contin. Mech. Thermodyn. 1–34 (2018)Google Scholar
  7. 7.
    Placidi, L., Barchiesi, E., Turco, E., Rizzi, N.L.: A review on 2D models for the description of pantographic fabrics. Zeitschrift für angewandte Mathematik und Physik 67(5), 121 (2016)ADSMathSciNetCrossRefGoogle Scholar
  8. 8.
    Barchiesi, E., Placidi, L.: A review on models for the 3D statics and 2D dynamics of pantographic fabrics. In: Wave Dynamics and Composite Mechanics for Microstructured Materials and Metamaterials, pp. 239–258. Springer, Singapore (2017)Google Scholar
  9. 9.
    Craster, R.V., Guennau, S. (eds.): Acoustic Metamaterials: Negative Refraction, Imaging, Lensing and Cloaking. Springer, New York (2012)Google Scholar
  10. 10.
    di Cosmo, F., Laudato, M., Spagnuolo, M.: Acoustic metamaterials based on local resonances: homogenization, optimization and applications. In: Generalized Models and Nonclassical Approaches in Complex Materials vol. 1, pp. 247–274. Springer, Cham (2018)Google Scholar
  11. 11.
    Deymier, P.A. (ed.): Acoustic Metamaterials and Phononic Crystals. Springer, New York (2013)Google Scholar
  12. 12.
    Liu, Z., Zhang, X., Mao, Y., Zhu, Y.Y., Yang, Z., Chan, C.T., Sheng, P.: Locally resonant sonic materials. Science 289(5485), 1734–1736 (2000)ADSCrossRefGoogle Scholar
  13. 13.
    Barchiesi, E., Spagnuolo, M., Placidi, L.: Mechanical metamaterials: a state of the art. Math. Mech. Solids (2018).  https://doi.org/10.1177/1081286517735695
  14. 14.
    Barchiesi, E., Laudato, M., Di Cosmo, F.: Wave dispersion in non-linear pantographic beams. Mech. Res. Commun. 94, 128–132 (2018)CrossRefGoogle Scholar
  15. 15.
    Laudato, M., Manzari, L., Barchiesi, E., Di Cosmo, F., Göransson, P.: First experimental observation of the dynamical behavior of a pantographic metamaterial. Mech. Res. Commun. 94, 125–127 (2018)CrossRefGoogle Scholar
  16. 16.
    Rosi, G., Giorgio, I., Eremeyev, V.A.: Propagation of linear compression waves through plane interfacial layers and mass adsorption in second gradient fluids. ZAMM - Journal of Applied Mathematics and Mechanics/Zeitschrift für Angewandte Mathematik und Mechanik 93(12), 914–927 (2013)ADSMathSciNetCrossRefGoogle Scholar
  17. 17.
    Abo-Dahab, S.M., Abd-Alla, A.M., Gohaly, A.: On reflection of plane elastic waves problem at a free surface under initial stress, magnetic field, and temperature field. J. Comput. Theor. Nanosci. 11, 2171–2180 (2014)CrossRefGoogle Scholar
  18. 18.
    Kumar, R., Rupender, A.: Reflection at the free surface of magneto–thermo–microstretch elastic solid. Bull. Pol. Acad. Tech. 56, 263–271 (2008)Google Scholar
  19. 19.
    Tomar, S.K., Khurana, A.: Reflection and transmission of elastic waves from a plane interface between two thermo-microstretch solid half-spaces. Int. J. Appl. Math. Mech. 5, 48–68 (2009)Google Scholar
  20. 20.
    Kumar, R., Garg, S.K., Ahuja, S.: A Study of plane wave and fundamental solution in the theory of an electro-microstretch generalized thermoelastic solid. Mater. Phys. Mech. 16, 34–54 (2013)Google Scholar
  21. 21.
    Singh, D., Kumar, A., Kumar, R.: A problem in microstretch thermoelastic diffusive medium. Int. J. Mater. Comput. Phys. Quant. Eng. 8, 6–9 (2014)Google Scholar
  22. 22.
    Othman, M.I.A., Abo-Dahab, S.M., Lotfy, Kh: Gravitational effect and initial stress on generalized magneto–thermo–microstretch elastic solid for different theories. Appl. Math. Comput. 230, 597–615 (2014)MathSciNetzbMATHGoogle Scholar
  23. 23.
    Eringen, A.C.: Microcontinuum Field Theories I: Foundation and Solids. Springer, Newyork (1999)CrossRefGoogle Scholar
  24. 24.
    Eringen, A.C.: Continuum theory of micromorphic electromagnetic thermoelastic solids. Int. J. Eng. Sci. 41, 653–665 (2003)MathSciNetCrossRefGoogle Scholar
  25. 25.
    Eringen, A.C.: Electromagnetic theory of microstretch elasticity and bone modeling. Int. J. Eng. Sci. 42, 231–242 (2004)MathSciNetCrossRefGoogle Scholar
  26. 26.
    Lee, J.D., Chen, Y., Eskandarian, A.: A micromorphic electromagnetic theory. Int. J. Solid Struct. 41, 2099–2110 (2004)CrossRefGoogle Scholar
  27. 27.
    Iesan, D.: On the microstretch piezoelectricity. Int. J. Eng. Sci. 44, 819–829 (2006)MathSciNetCrossRefGoogle Scholar
  28. 28.
    Iesan, D., Quintanilla, R.: Some theorems in the theory of microstretch thermopiezoelectricity. Int. J. Eng. Sci. 45, 1–16 (2007)MathSciNetCrossRefGoogle Scholar
  29. 29.
    Iesan, D.: On the bending of piezoelectric plates with microstructure. Acta Mech. 198, 191–208 (2008)CrossRefGoogle Scholar
  30. 30.
    Iesan, D.: Thermopiezoelectricity without energy dissipation. Proc. R. Soc. A 464, 631–657 (2008)ADSMathSciNetCrossRefGoogle Scholar
  31. 31.
    Abd-Alla, A.M., Abo-Dahab, S.M., Bayones, F.S.: Wave propagation in fibre-reinforced anisotropic thermoelastic medium subjected to gravity field. Struct. Eng. Mech. 53, 76–90 (2015)CrossRefGoogle Scholar
  32. 32.
    Abd-Alla, A.M., Nofal, T.A., Abo-Dahab, S.M., Al-Mullise, A.: Effect of gravity field on fibre-reinforced generalized thermoelastic media. J. Comput. Theor. Nanosci. 11, 2399–2410 (2014)CrossRefGoogle Scholar
  33. 33.
    Abo-Dahab, S.M.: A new features on S-waves propagation in a non-homogeneous anisotropic incompressible mediumunder influences of gravity field and initial stress with and without electromagnetic field and rotation. Mech. Adv. Mater. Struct. 24(14), 1145–1158 (2017)CrossRefGoogle Scholar
  34. 34.
    Othman, M.I.A., Said, S.: The effect of rotation on a fiber-reinforced medium under generalized magneto-thermoelasticity with internal heat source. Mech. Adv. Mater. Struct. 22, 168–183 (2013)CrossRefGoogle Scholar
  35. 35.
    Abd-Alla, A.M., Mahmoud, S.R., Abo-Dahab, S.M.: On problem of transient coupled thermoelasticity of an annular fin. Meccanica 47, 1295–1306 (2012)MathSciNetCrossRefGoogle Scholar
  36. 36.
    Abd-Alla, A.N., Yahia, A.A., Abo-Dahab, S.M.: On the reflection of the generalized magneto–thermo–viscoelastic plane waves. Chaos Solitons Fract. 16(2), 211–231 (2003)ADSMathSciNetCrossRefGoogle Scholar
  37. 37.
    Othman, M.I.A., Atwa, S.Y., Jahangir, A., Khan, A.: The effect of gravity on plane waves in a rotating thermo-microstretch elastic solid for a mode-I crack with energy dissipation. Mech. Adv. Mater. Struct. 22, 945–955 (2015)CrossRefGoogle Scholar
  38. 38.
    Othman, M.I.A.: State space approach to the generalized thermoelastic problem with temperature-dependent elastic moduli and internal heat sources. J. Appl. Mech. Tech. Phys. 52, 644–654 (2011)ADSMathSciNetCrossRefGoogle Scholar
  39. 39.
    Othman, M.I.A., Song, Y.Q.: Effect of the thermal relaxation and magnetic field on generalized micropolar thermoelasticity. J. Appl. Mech. Tech. Phys. 57, 108–116 (2016)ADSMathSciNetCrossRefGoogle Scholar
  40. 40.
    Abd-Alla, A.N., Al-Sheikh, F.A., Al-Hossain, A.Y.: The reflection phenomena of quasi-vertical transverse waves in piezoelectric medium under initial stresses. Meccanica 47(3), 731–744 (2012)MathSciNetCrossRefGoogle Scholar
  41. 41.
    Abd-alla, A.N., Al-Hossain, A.Y., Farhoud, F.A., Ibrahim, M.: The mathematical model of reflection and refraction of plane quasi-vertical transverse waves at interface nano-composite smart material. J. Comput. Theor. Nanosci. 8(7), 1193–1202 (2011)CrossRefGoogle Scholar
  42. 42.
    Altenbach, H., Eremeyev, V., Lebedev, L., Rendón, L.: Acceleration waves and ellipticity in thermoelastic micropolar media. Arch. Appl. Mech. 80(3), 217–227 (2010)ADSCrossRefGoogle Scholar
  43. 43.
    Eremeyev, V.A., Rosi, G., Naili, S.: Surface/interfacial anti-plane waves in solids with surface energy. Mech. Res. Commun. 74, 8–13 (2016)CrossRefGoogle Scholar
  44. 44.
    Eremeyev, V. A.: Acceleration waves in micropolar elastic media. In: Doklady Physics, vol. 50, No. 4, pp. 204–206. Nauka/Interperiodica, April 2005Google Scholar
  45. 45.
    Placidi, L., Hutter, K.: An anisotropic flow law for incompressible polycrystalline materials. Z. Angew. Math. Phys. 57(1), 160–181 (2005)MathSciNetCrossRefGoogle Scholar
  46. 46.
    Placidi, L., Hutter, K.: Thermodynamics of polycrystalline materials treated by the theory of mixtures with continuous diversity. Contin. Mech. Thermodyn. 17(6), 409–451 (2006)ADSMathSciNetCrossRefGoogle Scholar
  47. 47.
    Quiligotti, S., Maugin, G.A., dell’Isola, F.: Wave motions in unbounded poroelastic solids infused with compressible fluids. Z. Angew. Math. Phys. 53(6), 1110–1138 (2002)MathSciNetCrossRefGoogle Scholar
  48. 48.
    Rousseau, M., Maugin, G.A.: Wave momentum in models of generalized continua. Wave Motion 50(3), 509–519 (2013)MathSciNetCrossRefGoogle Scholar
  49. 49.
    Abbas, I.A., Abd-alla, A.N., Othman, M.I.: Generalized magneto-thermoelasticity in a fiber-reinforced anisotropic half-space. Int. J. Thermophys. 32(5), 1071–1085 (2011)ADSCrossRefGoogle Scholar
  50. 50.
    Abbas, I.A., Alshaikh, F.: Analytical and computational solution of three-dimensional thermoelastic interactions in porous material with temperature-dependent properties. J. Comput. Theor. Nanosci. 14(8), 4021–4033 (2017)CrossRefGoogle Scholar
  51. 51.
    Franciosi, P., Spagnuolo, M., Salman, O. U.: Mean Green operators of deformable fiber networks embedded in a compliant matrix and property estimates. Contin. Mech. Thermodyn. 1–32 (2018)Google Scholar
  52. 52.
    Franciosi, P.: A decomposition method for obtaining global mean Green operators of inclusions patterns. Application to parallel infinite beams in at least transversally isotropic media. Int. J. Solids Struct. 147, 1–19 (2018)CrossRefGoogle Scholar
  53. 53.
    Giorgio, I., Scerrato, D.: Multi-scale concrete model with rate-dependent internal friction. Eur. J. Environ. Civ. Eng. 21(7–8), 821–839 (2017)CrossRefGoogle Scholar
  54. 54.
    Della Corte, A., Battista, A., dell’Isola, F.: Referential description of the evolution of a 2D swarm of robots interacting with the closer neighbors: perspectives of continuum modeling via higher gradient continua. Int. J. Non-Linear Mech. 80, 209–220 (2016)ADSCrossRefGoogle Scholar
  55. 55.
    dell’Isola, F., Giorgio, I., Pawlikowski, M., Rizzi, N.: Large deformations of planar extensible beams and pantographic lattices: heuristic homogenization, experimental and numerical examples of equilibrium. Proc. Roy. Soc. Lond. Ser. A 472, 2185 (2016)CrossRefGoogle Scholar
  56. 56.
    Placidi, L., Andreaus, U., Giorgio, I.: Identification of two-dimensional pantographic structure via a linear D4 orthotropic second gradient elastic model. J. Eng. Math. 103(1), 1–21 (2017)MathSciNetCrossRefGoogle Scholar
  57. 57.
    Placidi, L., Barchiesi, E., Della Corte, A.: Identification of two-dimensional pantographic structures with a linear D4 orthotropic second gradient elastic model accounting for external bulk double forces. In: Mathematical Modelling in Solid Mechanics, pp. 211–232. Springer, Singapore (2017)Google Scholar
  58. 58.
    Spagnuolo, M., Andreaus, U.: A targeted review on large deformations of planar elastic beams: extensibility, distributed loads, buckling and post-buckling. Math. Mech. Solids (2018).  https://doi.org/10.1177/1081286517737000
  59. 59.
    Berezovski, A., Giorgio, I., Della Corte, A.: Interfaces in micromorphic materials: wave transmission and reflection with numerical simulations. Math. Mech. Solids 21(1), 37–51 (2016)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • S. M. Abo-Dahab
    • 1
    • 2
  • Adnan Jahangir
    • 3
  • Abo-el-nour N. Abd-alla
    • 4
    Email author
  1. 1.Department of Mathematics, Faculty of ScienceSouth Valley UniversityQenaEgypt
  2. 2.Department of Mathematics, Faculty of ScienceTaif UniversityTaifSaudi Arabia
  3. 3.Department of MathematicsCOMSATS University IslamabadWah CantonmentPakistan
  4. 4.Department of Mathematics, Faculty of ScienceSohag UniversitySohâgEgypt

Personalised recommendations