Advertisement

Continuum Mechanics and Thermodynamics

, Volume 31, Issue 3, pp 807–821 | Cite as

Nonlocal and nonlinear contributions to the thermal and elastic high-frequency wave propagations at nanoscale

  • A. SellittoEmail author
  • M. Di Domenico
Original Article
  • 37 Downloads

Abstract

We analyze the role played by nonlocal and nonlinear effects in the propagation of thermal and elastic high-frequency waves in nanosystems. The study is performed both in the case of a rigid body (i.e., for heat-pulse propagation) and in the case of a nonrigid body (i.e., for thermoelastic-pulse propagation). In the framework of extended irreversible thermodynamics, the compatibility of our theoretical models with second law is proved.

Keywords

Thermal-wave propagation Elastic-wave propagation Nonlocal effects Nonlinear effects Thermoelasticity Nanosystems 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

A. S. acknowledges the University of Salerno for the financial supports under Grant No. 300393FRB17CIARL and Grant “Fondo per il finanziamento iniziale dell’attività di ricerca,” as well as the Italian “Agenzia Nazionale di Valutazione del sistema Universitario e della Ricerca” for the financial support under Grant “Fondo per il finanziamento delle attività base di ricerca.” Both authors thank the Italian “National Group of Mathematical Physics (GNFM-INdAM)” for supporting the research Project “Progetto Giovani 2018/Heat-pulse propagation in FGMs.”

References

  1. 1.
    Reissland, J.A.: The Physics of Phonons. Wiley, London (1973)Google Scholar
  2. 2.
    Liboff, R.L.: Kinetic Theory (Classical, Quantum and Relativistic Description). Prentice Hall, Englewood Cliffs (1990)Google Scholar
  3. 3.
    Ziman, J.M.: Electrons and Phonons. Oxford University Press, Oxford (2001)CrossRefzbMATHGoogle Scholar
  4. 4.
    Lebon, G., Jou, D., Casas-Vázquez, J.: Understanding Non-equilibrium Thermodynamics. Springer, Berlin (2008)CrossRefzbMATHGoogle Scholar
  5. 5.
    Jou, D., Casas-Vázquez, J., Lebon, G.: Extended Irreversible Thermodynamics, Fourth revised edn. Springer, Berlin (2010)CrossRefzbMATHGoogle Scholar
  6. 6.
    Marin, L.: Numerical solution of the Cauchy problem for steady-state heat transfer in two-dimensional functionally graded materials. Int. J. Solids Struct. 42, 4338–4351 (2005)CrossRefzbMATHGoogle Scholar
  7. 7.
    Burlayenko, V., Altenbach, H., Sadowski, T., Dimitrova, S., Bhaskar, A.: Modelling functionally graded materials in heat transfer and thermal stress analysis by means of graded finite elements. Appl. Math. Modell. 45, 422–438 (2017)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Ciarletta, A.S.M., Tibullo, V.: Heat-pulse propagation in functionally graded thin layers. Int. J. Eng. Sci. 119, 78–92 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Lee, S., Broido, D., Esfarjani, K., Chen, G.: Hydrodynamic phonon transport in suspended graphene. Nat. Commun. 6, 6290 (2015)ADSCrossRefGoogle Scholar
  10. 10.
    Fryer, M.J., Struchtrup, H.: Moment model and boundary conditions for energy transport in the phonon gas. Contin. Mech. Thermodyn. 26, 593–618 (2014)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Sellitto, A., Carlomagno, I., Jou, D.: Two-dimensional phonon hydrodynamics in narrow strips. Proc. R. Soc. A 471, 20150376 (2015)Google Scholar
  12. 12.
    Zhang, Z.M.: Nano/Microscale Heat Transfer. McGraw-Hill, New York (2007)Google Scholar
  13. 13.
    Tzou, D.Y.: Macro- to Microscale Heat Transfer: The Lagging Behaviour, 2nd edn. Wiley, London (2014)Google Scholar
  14. 14.
    Lebon, G.: Heat conduction at micro and nanoscales: a review through the prism of extended irreversible thermodynamics. J. Non-equilib. Thermodyn. 39, 35–59 (2014)ADSCrossRefGoogle Scholar
  15. 15.
    Sellitto, A., Cimmelli, V.A., Jou, D.: Mesoscopic Theories of Heat Transport in Nanosystems. SEMA-SIMAI Springer Series, vol. 6. Springer, New York (2016)zbMATHGoogle Scholar
  16. 16.
    Cahill, D.C., Ford, W.K., Goodson, K.E., Mahan, G.D., Majumdar, A., Maris, H.J., Merlin, R., Phillpot, S.R.: Nanoscale thermal transport. J. Appl. Phys. 93(2), 793–818 (2003)ADSCrossRefGoogle Scholar
  17. 17.
    Cahill, D.G., Braun, P.V., Chen, G., Clarke, D.R., Fan, S., Goodson, K.E., Keblinski, P., King, W.P., Mahan, G.D., Majumdar, A., Maris, H.J., Phillpot, S.R., Pop, E., Shi, L.: Nanoscale thermal transport. II. 2003–2012. Appl. Phys. Rev. 1(1), 011305 (2014)ADSCrossRefGoogle Scholar
  18. 18.
    Guyer, R.A., Krumhansl, J.A.: Solution of the linearized phonon Boltzmann equation. Phys. Rev. 148, 766–778 (1966)ADSCrossRefGoogle Scholar
  19. 19.
    Ván, P.: Weakly nonlocal irreversible thermodynamics—the Guyer–Krumhansl and the Cahn–Hilliard equations. Phys. Lett. A 290, 88–92 (2001)ADSCrossRefzbMATHGoogle Scholar
  20. 20.
    Kovács, R., Ván, P.: Generalized heat conduction in heat pulse experiments. Int. J. Heat Mass Transf. 83, 613–620 (2015)CrossRefGoogle Scholar
  21. 21.
    Luzzi, R., Vasconcellos, A.R., Casas-Vázquez, J., Jou, D.: Characterization and measurement of a nonequilibrium temperature-like variable in irreversible thermodynamics. Phys. A 234, 699–714 (1997)CrossRefGoogle Scholar
  22. 22.
    Jou, D., Cimmelli, V.A., Sellitto, A.: Nonequilibrium temperatures and second-sound propagation along nanowires and thin layers. Phys. Lett. A 373, 4386–4392 (2009)ADSCrossRefzbMATHGoogle Scholar
  23. 23.
    Jou, D., Restuccia, L.: Caloric and entropic temperatures in non-equilibrium steady states. Phys. A 460, 246–253 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Cimmelli, V.A., Sellitto, A., Jou, D.: Nonequilibrium temperatures, heat waves, and nonlinear heat transport equations. Phys. Rev. B 81, 054301 (2010)ADSCrossRefGoogle Scholar
  25. 25.
    Sellitto, A., Tibullo, V., Dong, Y.: Nonlinear heat-transport equation beyond fourier law: Application to heat-wave propagation in isotropic thin layers. Continuum Mech. Thermodyn. 29, 411–428 (2017)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    Jou, D., Sellitto, A., Alvarez, F.X.: Heat waves and phonon-wall collisions in nanowires. Proc. R. Soc. A 467, 2520–2533 (2011)ADSMathSciNetCrossRefGoogle Scholar
  27. 27.
    Vázquez, F., del Río, J.A.: Thermodynamic characterization of the diffusive transport to wave propagation transition in heat conducting thin films. J. Appl. Phys. 112, 123707 (2012)ADSCrossRefGoogle Scholar
  28. 28.
    Tang, D.-S., Cao, B.-Y.: Ballistic thermal wave propagation along nanowires modeled using phonon Monte Carlo simulations. Appl. Therm. Eng. 117, 609–616 (2017)CrossRefGoogle Scholar
  29. 29.
    Cattaneo, C.: Sulla conduzione del calore. Atti Sem. Mat. Fis. Univ. Modena 3, 83–101 (1948)MathSciNetzbMATHGoogle Scholar
  30. 30.
    Müller, I., Ruggeri, T.: Rational Extended Thermodynamics, 2nd edn. Springer, New York (1998)CrossRefzbMATHGoogle Scholar
  31. 31.
    Chandrasekharaiah, D.S.: Thermoelasticity with second sound: a review. Appl. Mech. Rev. 39, 355–376 (1986)ADSCrossRefzbMATHGoogle Scholar
  32. 32.
    Joseph, D.D., Preziosi, L.: Addendum to the paper "heat waves" [Rev. Mod. Phys. 61, 41 (1989)]. Rev. Mod. Phys. 62, 375–391 (1990)ADSCrossRefGoogle Scholar
  33. 33.
    Dreyer, W., Struchtrup, H.: Heat pulse experiments revisited. Contin. Mech. Thermodyn. 5, 3–50 (1993)ADSMathSciNetCrossRefGoogle Scholar
  34. 34.
    Marin, E. (ed.): Thermal Wave Physics and Related Photo Thermal Techniques: Basic Principle and Recent Developments. Transworld Research, Trivandrum (2009)Google Scholar
  35. 35.
    Ignaczak, J., Ostoja-Starzewski, M.: Thermoelasticity with Finite Wave Speeds. Oxford Science Publications, Oxford (2010)zbMATHGoogle Scholar
  36. 36.
    Straughan, B.: Heat Waves. Springer, Berlin (2011)CrossRefzbMATHGoogle Scholar
  37. 37.
    Yu, Y.J., Tian, X.-G., Xiong, Q.-L.: Nonlocal thermoelasticity based on nonlocal heat conduction and nonlocal elasticity. Eur. J. Mech. A Solid 60, 238–253 (2016)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  38. 38.
    Alam, M., Manoharan, M., Haque, M., Muratore, C., Voevodin, A.: Influence of strain on thermal conductivity of silicon nitride thin films. J. Micromech. Microeng. 22, 045001 (2012)ADSCrossRefGoogle Scholar
  39. 39.
    Fan, D., Sigg, H., Spolenak, R., Ekinci, Y.: Strain and thermal conductivity in ultrathin suspended silicon nanowires. Phys. Rev. B 96, 115307 (2017)ADSCrossRefGoogle Scholar
  40. 40.
    Ding, X., Salje, E.K.H.: Heat transport by phonons and the generation of heat by fast phonon processes in ferroelastic materials. AIP Adv. 5, 053604 (2015)ADSCrossRefGoogle Scholar
  41. 41.
    Verhás, J.: On the entropy current. J. Non-equilib. Thermodyn. 8, 201–206 (1983)ADSCrossRefGoogle Scholar
  42. 42.
    Sellitto, A., Cimmelli, V.A., Jou, D.: Entropy flux and anomalous axial heat transport at the nanoscale. Phys. Rev. B 87, 054302 (2013)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Industrial EngineeringUniversity of SalernoFiscianoItaly
  2. 2.Department of PhysicsUniversity of SalernoFiscianoItaly

Personalised recommendations