Advertisement

Continuum Mechanics and Thermodynamics

, Volume 31, Issue 3, pp 741–750 | Cite as

A non-isothermal phase-field model for piezo–ferroelectric materials

  • A. Borrelli
  • D. GrandiEmail author
  • M. Fabrizio
  • M. C. Patria
Original Article
  • 32 Downloads

Abstract

We propose a model for the study of piezo–ferroelectric materials, based on the Ginzburg–Landau approach to the ferroelectric transition, in which the inelastic deformation is a direct function of the ferroelectric polarization. The non-isothermal effects related to the phase change and other dissipative phenomena are considered by a suitable energy balance equation, according to the restrictions of the second principle. The hysteresis phenomena for polarization and inelastic strain are considered from both the energetic perspective of the vector Ginzburg–Landau equation and the dissipation-dominated perspective of the rate-independent evolutionary equations.

Keywords

Ferroelectric Ferroelastic Hysteresis Phase field Non-isothermal model 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

References

  1. 1.
    Bassiouny, E., Ghaleb, A., Maugin, G.: Thermodynamical formulation for coupled electromechanical hysteresis effects—I. Basic equations. II Poling of ceramics. Int. J. Eng. Sci. 26, 1279–1306 (1988)CrossRefzbMATHGoogle Scholar
  2. 2.
    Bassiouny, E., Ghaleb, A., Maugin, G.: Thermodynamical formulation for coupled electromechanical hysteresis effects—III. Parameter identification. IV. Combined electromechanical loading. Int. J. Eng. Sci. 26, 975–1000 (1988)zbMATHGoogle Scholar
  3. 3.
    Borrelli, A., Horgan, C.O., Patria, M.C.: Saint–Venant’s principle for a antiplane shear deformations of linear piezoelectric materials. SIAM J. Appl. Math. 62, 2027–2044 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Borrelli, A., Horgan, C.O., Patria, M.C.: Exponential decay of end effects in anti-plane shear for functionally graded piezoelectric materials. Proc. R. Soc. Lond. A 460, 1193–1212 (2004)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Chen, P.J.: Hysteresis effects in deformable ceramics. In: Maugin, G.A. (ed.) The Mechanical Behavior of Electromagnetic Solid Continua IUTAM, pp. 137–143. Elsevier, Amsterdam (1984)Google Scholar
  6. 6.
    Fabrizio, M.: Ice-water and liquid-vapor phase transitions by a Ginzburg–Landau model. J. Math. Phys. 49, 102902 (2008)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Fabrizio, M., Giorgi, C., Morro, A.: A thermodynamic approach to non-isothermal phase-field evolution in continuum physics. Phys. D 214, 144–156 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Fabrizio, M., Lazzari, B., Nibbi, R.: Thermodynamics of non-local materials: extra fluxes and internal powers. Continuum Mech. Thermodyn. 23, 509–525 (2011)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Gurtin, M.E.: Generalized Ginzburg–Landau and Cahn–Hilliard equations based on a microforce balance. Phys. D 92, 178–192 (1996)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Ikeda, T.: Fundamentals of Piezoelectricity. Oxford University Press, Oxford (1996)Google Scholar
  11. 11.
    Kamlah, M.: Ferroelectric and ferroelastic piezoceramics modeling of electromechanical hysteresis phenomena. Continuum Mech. Thermodyn. 13, 219–268 (2001)ADSCrossRefzbMATHGoogle Scholar
  12. 12.
    Kamlah, M., Tsakmakis, C.: Phenomenological modeling of the non-linear electro-mechanical coupling in ferroelectrics. Int. J. Solids Struct. 36, 669–695 (1999)CrossRefzbMATHGoogle Scholar
  13. 13.
    Landis, C.M.: Fully coupled, multi-axial, symmetric constitutive laws for polycrystalline ferroelectric ceramics. J. Mech. Phys. Solids 50, 127–152 (2002)ADSCrossRefzbMATHGoogle Scholar
  14. 14.
    Maugin, G.: Continuum Mechanics of Electromagnetic Solids. Elsevier, Amsterdam (1988)zbMATHGoogle Scholar
  15. 15.
    McMeeking, R., Landis, C.: A phenomenological multi-axial constitutive law for switching in polycrystalline ferroelectric ceramics. Int. J. Eng. Sci. 40, 1553–1577 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Mielke, A., Roubíček, T.: Rate-Independent Systems. Springer, Berlin (2015)CrossRefzbMATHGoogle Scholar
  17. 17.
    Müller, R., Gross, D., Schrade, D., Xu, B.X.: Phase field simulation of domain structures in ferroelectric materials within the context of inhomogeneity evolution. Int. J. Fract. 47, 173–180 (2007)CrossRefzbMATHGoogle Scholar
  18. 18.
    Strukov, B.A., Levanyuk, A.P.: Ferroelectric Phenomena in Crystals. Springer, Berlin (1998)CrossRefzbMATHGoogle Scholar
  19. 19.
    Völker, B., Marton, P., Elsässer, C., Kamlah, M.: Multiscale modeling for ferroelectric materials: a transition from the atomic level to phase-field modeling. Continuum Mech. Thermodyn. 23, 435–451 (2011)ADSCrossRefzbMATHGoogle Scholar
  20. 20.
    Wang, J., Shi, S.-Q., Chen, L.-Q., Li, Y., Zhang, T.-Y.: Phase field simulations of ferroelectric/ferroelastic polarisation switching. Acta Mater. 52, 749–764 (2004)CrossRefGoogle Scholar
  21. 21.
    Yang, J.: An Introduction to the Theory of Piezoelectricity. Springer, Berlin (2005)zbMATHGoogle Scholar
  22. 22.
    Zhang, W., Bhattacharya, K.: A computational model of ferroelectric domains. Part I: model formulation and domain switching. Part II: grain boundaries and defect pinning. Acta Mater. 53, 185–209 (2005)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • A. Borrelli
    • 1
  • D. Grandi
    • 1
    Email author
  • M. Fabrizio
    • 2
  • M. C. Patria
    • 1
  1. 1.Dipartimento di Matematica e InformaticaUniversità degli Studi di FerraraFerraraItaly
  2. 2.Dipartimento di MatematicaUniversità di BolognaBolognaItaly

Personalised recommendations