Advertisement

Numerical modeling of a composite auxetic metamaterials using micro-dilatation theory

  • Yury Solyaev
  • Sergey Lurie
  • Anastasia Ustenko
Original Article

Abstract

Micro-dilatation theory of elasticity is the simplest special case of the micromorphic theory, assuming that the micro-deformation tensor has the spherical form. Recently, it was shown that the micro-dilatation theory can be efficiently used as the continuum model of cellular auxetic metamaterials with re-entrant type lattice structure. Here, we provide a further development of this subject and present the results of numerical three-dimensional modeling of composite cellular metamaterials using the conventional lattice model and the corresponding continuum micro-dilatation model. We consider the two-phase metastructures which behave like a heterogeneous auxetic material under tension/compression and, at the same time, like a homogeneous material under shear. These results are achieved due to the absence of coupling between the microstructural micro-dilatation effects and the macroscopic shear properties of the metamaterial. The positive size effect for the apparent Young’s modulus of the considered composite structures is shown. Additionally, the simple way for the finite-element implementation of the micro-dilatation theory in the Comsol system is described.

Keywords

Micro-dilatation elasticity Auxetic metamaterial Micromorphic continuum Finite element simulation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

This work was partially supported by the Grants RFBR 18-01-00553-a, RFBR 18-08-00643-a, MK-1336.2017.8 and the funding of the IAM RAS program.

References

  1. 1.
    Abali, B., Müller, W., Dell’Isola, F.: Theory and computation of higher gradient elasticity theories based on action principles. Arch. Appl. Mech. 87(9), 1495–1510 (2017)ADSCrossRefGoogle Scholar
  2. 2.
    Alemi, B., Shodja, H.M.: Effective shear modulus of solids reinforced by randomly oriented-/aligned-elliptic multi-coated nanofibers in micropolar elasticity. Compos. Part B Eng. 143, 197–206 (2018)CrossRefGoogle Scholar
  3. 3.
    Bacigalupo, A., Gambarotta, L.: Homogenization of periodic hexa-and tetrachiral cellular solids. Compos. Struct. 116, 461–476 (2014)CrossRefGoogle Scholar
  4. 4.
    Berkache, K., Deogekar, S., Goda, I., Picu, R., Ganghoffer, J.F.: Identification of equivalent couple-stress continuum models for planar random fibrous media. Continuum Mechanics and Thermodynamics. (2018).  https://doi.org/10.1007/s00161-018-0710-2
  5. 5.
    Bîrsan, M., Altenbach, H.: On the theory of porous elastic rods. Int. J. Solids Struct. 48(6), 910–924 (2011)CrossRefGoogle Scholar
  6. 6.
    Cowin, S.: The stresses around a hole in a linear elastic material with voids. Q. J. Mech. Appl. Math. 37(3), 441–465 (1984)CrossRefGoogle Scholar
  7. 7.
    Cowin, S., Nunziato, J.: Linear elastic materials with voids. J. Elast. 13(2), 125–147 (1983)CrossRefGoogle Scholar
  8. 8.
    Dell’Isola, F., Steigmann, D., Della Corte, A.: Synthesis of fibrous complex structures: designing microstructure to deliver targeted macroscale response. Appl. Mech. Rev. 6, 060,804 (2015)Google Scholar
  9. 9.
    Dell’Isola, F., Seppecher, P., Alibert, J.J., Lekszycki, T., Grygoruk, R., Pawlikowski, M., Steigmann, D., Giorgio, I., Andreaus, U., Turco, E, et al.: Pantographic metamaterials: an example of mathematically driven design and of its technological challenges. Continuum Mech. Thermodyn. (2018). https://doi.org/10.1007/s00161-018-0689-8
  10. 10.
    Dos Reis, F., Ganghoffer, J.: Construction of micropolar continua from the asymptotic homogenization of beam lattices. Comput. Struct. 112, 354–363 (2012)CrossRefGoogle Scholar
  11. 11.
    Eremeyev, V., Dell’Isola, F., Boutin, C., Steigmann, D.: Linear pantographic sheets: existence and uniqueness of weak solutions. J. Elast. 132(2), 175–196 (2018)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Lakes, R.: Experimental microelasticity of two porous solids. Int. J. Solids Struct. 22(1), 55–63 (1986)CrossRefGoogle Scholar
  13. 13.
    Lurie, S., Kalamkarov, A.: General theory of continuous media with conserved dislocations. Int. J. Solids Struct. 44(22–23), 7468–7485 (2007)CrossRefGoogle Scholar
  14. 14.
    Lurie, S., Solyaev, Y.: Revisiting bending theories of elastic gradient beams. Int. J. Eng. Sci. 126, 1–21 (2018)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Lurie, S., Volkov-Bogorodsky, D., Leontiev, A., Aifantis, E.: Eshelby’s inclusion problem in the gradient theory of elasticity: applications to composite materials. Int. J. Eng. Sci. 49(12), 1517–1525 (2011)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Lurie, S., Solyaev, Y., Volkov, A., Volkov-Bogorodskiy, D.: Bending problems in the theory of elastic materials with voids and surface effects. Math. Mech. Solids. (2017).  https://doi.org/10.1177/1081286517691570 MathSciNetCrossRefGoogle Scholar
  17. 17.
    Lurie, S., Solyaev, Y., Shramko, K.: Comparison between the mori-tanaka and generalized self-consistent methods in the framework of anti-plane strain inclusion problem in strain gradient elasticity. Mech. Mater. 122, 133–144 (2018)CrossRefGoogle Scholar
  18. 18.
    Lurie, S., Solyaev, Y., Rabinskiy, L., Polyakov, P., Sevostianov, I.: Mechanical behavior of porous Si\(_3\)N\(_4\) ceramics manufactured with 3d printing technology. J. Mater. Sci. 53(7), 4796–4805 (2018)ADSCrossRefGoogle Scholar
  19. 19.
    Lurie, S., Kalamkarov, A., Solyaev, Y., Ustenko, A., Volkov, A.: Continuum micro-dilatation modeling of auxetic metamaterials. Int. J. Solids Struct. 132–133, 188–200 (2018)CrossRefGoogle Scholar
  20. 20.
    Ma, H., Gao, X.L.: A new homogenization method based on a simplified strain gradient elasticity theory. Acta Mech. 225(4–5), 1075–1091 (2014)MathSciNetCrossRefGoogle Scholar
  21. 21.
    Markov, K.: On the dilatation theory of elasticity. ZAMM-J. Appl. Math. Mech./Zeitschrift für Angewandte Mathematik und Mechanik 61(8), 349–358 (1981)ADSCrossRefGoogle Scholar
  22. 22.
    Maugin, G.A.: The principle of virtual power: from eliminating metaphysical forces to providing an efficient modelling tool. Contin. Mech. Thermodyn. 25(2–4), 127–146 (2013)ADSMathSciNetCrossRefGoogle Scholar
  23. 23.
    Mindlin, R.: Micro-structure in linear elasticity. Arch. Ration. Mech. Anal. 16(1), 51–78 (1964)MathSciNetCrossRefGoogle Scholar
  24. 24.
    Misra, A., Lekszycki, T., Giorgio, I., Ganzosch, G., Müller, W., Dell’Isola, F.: Pantographic metamaterials show atypical poynting effect reversal. Mech. Res. Commun. 89, 6–10 (2018)CrossRefGoogle Scholar
  25. 25.
    Nunziato, J., Cowin, S.: A nonlinear theory of elastic materials with voids. Arch. Ration. Mech. Anal. 72(2), 175–201 (1979)MathSciNetCrossRefGoogle Scholar
  26. 26.
    Ramézani, H., Jeong, J.: Non-linear elastic micro-dilatation theory: matrix exponential function paradigm. Int. J. Solids Struct. 67, 1–26 (2015)CrossRefGoogle Scholar
  27. 27.
    Ramézani, H., Steeb, H., Jeong, J.: Analytical and numerical studies on penalized micro-dilatation (PMD) theory: macro–micro link concept. Eur. J. Mech.-A/Solids 34, 130–148 (2012)ADSMathSciNetCrossRefGoogle Scholar
  28. 28.
    Rueger, Z., Lakes, R.: Cosserat elasticity of negative Poisson’s ratio foam: experiment. Smart Mater. Struct. 25(5), 054004 (2016)ADSCrossRefGoogle Scholar
  29. 29.
    Rueger, Z., Lakes, R.: Strong cosserat elastic effects in a unidirectional composite. Zeitschrift für angewandte Mathematik und Physik 68(3), 54 (2017)ADSCrossRefGoogle Scholar
  30. 30.
    Solyaev, Y., Lurie, S.: Numerical predictions for the effective size-dependent properties of piezoelectric composites with spherical inclusions. Compos. Struct. 202, 1099–1108 (2018)CrossRefGoogle Scholar
  31. 31.
    Trovalusci, P., Ostoja-Starzewski, M., De Bellis, M., Murrali, A.: Scale-dependent homogenization of random composites as micropolar continua. Eur. J. Mech.-A/Solids 49, 396–407 (2015)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Institute of Applied Mechanics of Russian Academy of Sciences and Moscow Aviation InstituteMoscowRussia
  2. 2.Institute of Applied Mechanics of Russian Academy of Sciences and Lomonosov Moscow State UniversityMoscowRussia
  3. 3.Institute of Applied Mechanics of Russian Academy of SciencesMoscowRussia

Personalised recommendations