Advertisement

Continuum Mechanics and Thermodynamics

, Volume 31, Issue 3, pp 725–740 | Cite as

Integrating molecular and cellular kinetics into a coupled continuum mechanobiological stimulus for bone reconstruction

  • D. GeorgeEmail author
  • R. Allena
  • Y. Rémond
Original Article

Abstract

The development of multiphysics numerical models to predict bone reconstruction is a very challenging task as it is a complex phenomenon where many biological, chemical and mechanical processes occur at different lengths and timescales. We present here a mechanobiological theoretical numerical model accounting for both the mechanical and biological environments to predict the bone reconstruction process through the use of a global stimulus integrating the contributions of applied external mechanical loads, cellular activities and cellular nutriments such as oxygen and glucose supply. The bone density evolution will hence depend on the overall stimulus and evolve accordingly to the intensities of each of its individual constituents. We show their specific influences and couplings on a simple two-dimensional geometry and confirm that, although the mechanics plays a crucial role in the bone reconstruction process, it is still highly dependent on the occurring biological events and will evolve accordingly.

Keywords

Bone reconstruction Multiphysical stimulus Oxygen Glucose Cell motility 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

References

  1. 1.
    Frost, H.: Bone “mass” and the “mechanostat”: a proposal. J. Anat. Rec. 219, 1–9 (1987)CrossRefGoogle Scholar
  2. 2.
    Cowin, S.C.: Wolff’s law of trabecular architecture at remodeling equilibrium. J. Biomed. Eng. 108(1), 83–88 (1986)Google Scholar
  3. 3.
    Beaupré, G.S., Orr, T.E., Carter, D.R.: An approach for time-dependent bone modeling and remodeling–application: a preliminary remodeling simulation. J. Orth. Res. 8(5), 662–670 (1990)CrossRefGoogle Scholar
  4. 4.
    Turner, C.H.: Three rules for bone adaptation to mechanical stimuli. Bone 23(5), 399–407 (1998)CrossRefGoogle Scholar
  5. 5.
    Pivonka, P., Zimak, J., Smith, D.W., Gardiner, B.S., Dunstan, C.R., Sims, N.A.: Model structure and control of bone remodeling: a theoretical study. Bone 43(2), 249–263 (2008)CrossRefGoogle Scholar
  6. 6.
    Pivonka, P., Komarova, S.V.: Mathematical modeling in bone biology: from intracellular signaling to tissue mechanics. Bone 47(2), 181–189 (2010)CrossRefGoogle Scholar
  7. 7.
    Lekszycki, T.: Modeling of bone adaptation based on an optimal response hypothesis. Meccanica 37, 343–354 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Madeo, A., Lekszycki, T., Dell’Isola, F.: A continuum model for the bio-mechanical interactions between living tissue and bio-resorbable graft after bone reconstructive surgery. C.R. Mécanique 339, 625–640 (2011)ADSCrossRefGoogle Scholar
  9. 9.
    Madeo, A., George, D., Lekszycki, T., Nierenberger, M., Rémond, Y.: A second gradient continuum model accounting for some effects of micro-structure on reconstructed bone remodeling. C.R. Mécanique 340, 575–589 (2012)ADSCrossRefGoogle Scholar
  10. 10.
    Lekszycki, T., Dell’Isola, F.: A mixture model with evolving mass densities for describing synthesis and resorption phenomena in bones reconstructed with bio-resorbable materials. ZAMM 92, 426–444 (2012)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Madeo, A., George, D., Rémond, Y.: Second-gradient models accounting for some effects of microstructure on remodelling of bones reconstructed with bioresorbable materials. Comp. Meth. Biomech. Biomed. Eng. 16(sup1), 260–261 (2013)CrossRefGoogle Scholar
  12. 12.
    Andreaus, U., Giorgio, I., Lekszycki, T.: A 2-D continuum model of a mixture of bone tissue and bio-resorbable material for simulating mass density redistribution under load slowly variable in time. ZAMM 94, 978–1000 (2014)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    dell’Isola, F., Andreaus, U., Placidi, L.: At the origins and in the vanguard of peridynamics, non-local and higher-gradient continuum mechanics: An underestimated and still topical contribution of Gabrio Piola. Math. Mech. Sol 20(8), 887–928 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Misra, A., Poorsolhjouy, P.: Identification of higher-order elastic constants for grain assemblies based upon granular micromechanics. Math. Mech. Comp. Syst. 3(3), 285–308 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Ganghoffer, J.F.: Spatial and material stress tensors in continuum mechanics of growing solid bodies. Math. Mech. Comp. Syst. 3(4), 341–363 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Placidi, L., Andreaus, U., Della Corte, A., Lekszycki, T.: Gedanken experiments for the determination of two-dimensional linear second gradient elasticity coefficients. Zeit. Ang. Math. Phys. 66(6), 3699–3725 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    George, D., Spingarn, C., Madeo, A., Rémond, Y.: Effects of mechanical loading conditions on 3D bone reconstruction: a theoretical numerical study for application to Maxillo-facial surgery. In: Proceedings of the 9th European Solid Mechanics Conference, Madrid, Spain (2015)Google Scholar
  18. 18.
    Giorgio, I., Andreaus, U., Scerrato, D., Dell’Isola, F., et al.: A visco-poroelastic model of functional adaptation in bones reconstructed with bio-resorbable materials. Biomech. Model Mechanobiol. 15, 1325–1343 (2016)CrossRefGoogle Scholar
  19. 19.
    Scala, I., Spingarn, C., Rémond, Y., Madeo, A., George, D.: Mechanically-driven bone remodeling simulation: application to LIPUS treated rat calvarial defects. Math. Mech. Sol. 22(10), 1976–1988 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Spingarn, C., Rémond, Y., George, D.: Techniques de changement d’échelles pour la modélisation de tissus biologiques, Conf. MECAMAT, Mécanique pour le vivant, Aussois, France (2016)Google Scholar
  21. 21.
    Abali, B.E., Müller, W.H., dell’Isola, F.: Theory and computation of higher gradient elasticity theories based on action principles. Arch. App. Mech. 87(9), 1495–1510 (2017)CrossRefGoogle Scholar
  22. 22.
    Turco, E.: Tools for the numerical solution of inverse problems in structural mechanics: review and research perspectives. Eur. J. Env. Civ. Eng. 21(5), 509–554 (2017)MathSciNetCrossRefGoogle Scholar
  23. 23.
    dell’Isola, F., Della Corte, A., Giorgio, I.: Higher gradient continua: the legacy of Piola, Mindlin, Sedov and Toupin and some future research perspectives. Math. Mech. Sol. 22(4), 852–872 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Templet, G.J., Steigmann, D.J.: On the theory of diffusion and swelling in finitely deforming elastomers. Math. Mech. Comp. Syst. 1(1), 105–128 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    George, D., Rémond, Y.: Multiscale mechanobiology of human tissue: experiment and modelling. In: 6th International Symposium Europe China, Molecular, cellular and tissue engineering, and clinical applications, Nancy, France (2016)Google Scholar
  26. 26.
    George, D., Spingarn, C., Dissaux, C., Rémond, Y.: Understanding bone mechanobiology to predict bone reconstruction kinetics: application to maxillo-facial surgery, XII Rencontres du Vietnam, Mechanobiology, from molecules to tissue, Quy Nhon, Vietnam (2016)Google Scholar
  27. 27.
    Spingarn, C., Wagner, D., Rémond, Y., George, D.: Multiphysics of bone remodeling: a 2D mesoscale activation simulation. Bio-Med. Mat. Eng. 28(s1), S153–S158 (2017)Google Scholar
  28. 28.
    Cuomo, M.: Forms of the dissipation function for a class of viscoplastic models. Math. Mech. Comp. Syst. 5(3–4), 217–237 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  29. 29.
    Giorgio, I., Andreaus, U., Dell’Isola, F., Lekszycki, T.: Viscous second gradient porous materials for bones reconstructed with bio-resorbable grafts. Ext. Mech. Let. 13, 141–147 (2017)CrossRefGoogle Scholar
  30. 30.
    George, D., Spingarn, C., Dissaux, C., Nierenberger, M., Rahman, R.A., Rémond, Y.: Examples of multiscale and multiphysics numerical modeling of biological tissues. Bio-Med. Mat. Eng. 28(S1), S15–S27 (2017)Google Scholar
  31. 31.
    Lemaire, T., Capiez-Lernout, E., Kaiser, J., Naili, S., Sansalone, V.: What is the importance of multiphysical phenomena in bone remodelling signals expression? A multiscale perspective. J. Mech. Behav. Biom. Mat. 4(6), 909–920 (2011)CrossRefGoogle Scholar
  32. 32.
    Sansalone, V., Gagliardi, D., Descelier, C., Haiat, G., Naili, S.: On the uncertainty propagation in multiscale modeling of cortical bone elasticity. Comp. Meth. Biom. Biomed. Eng. 18, 2054–2055 (2015)CrossRefGoogle Scholar
  33. 33.
    Bednarczyk, E., Lekszycki, E.: A novel mathematical model for growth of capillaries and nutrient supply with application to prediction of osteophyte onset. ZAMP 67, 94 (2016)ADSMathSciNetzbMATHGoogle Scholar
  34. 34.
    Lu, Y., Lekszycki, T.: A novel coupled system of non-local integro-differential equations modelling Young’s modulus evolution, nutrients’ supply and consumption during bone fracture healing. ZAMP 67, 111 (2016)ADSMathSciNetzbMATHGoogle Scholar
  35. 35.
    Moya, A., Paquet, J., Deschepper, M., et al.: Human mesenchymal stem cell failure to adapt to glucose shortage and rapidly use intracellular energy reserves through glycolysis explains poor cell survival after implantation. Stem Cells 36, 363–376 (2018).  https://doi.org/10.1002/stem.2763 CrossRefGoogle Scholar
  36. 36.
    Paquet, J., Deschepper, M., Moya, A., et al.: Oxygen tension regulates human mesenchymal stem cell paracrine functions. Stem Cells Trans. Med. 4(7), 809–821 (2015)CrossRefGoogle Scholar
  37. 37.
    Deschepper, M., Oudina, K., David, B., Myrtil, V., Collet, C., Bensidhoum, M., Logeart-Avramoglou, D., Petite, H.: Survival and function of mesenchymal stem cells (MSCs) depend on glucose to overcome exposure to long-term, severe and continuous hypoxia. J. Cell. Mol. Med. 15(7), 1505–14 (2011)CrossRefGoogle Scholar
  38. 38.
    Farrel, M.J., Shin, J.I., Smith, L.J., Mauck, R.L.: Functional consequences of glucose and oxygen deprivation on engineered mesenchymal stem cell-based cartilage constructs. Osteoarthr. Cartil. 23(1), 134–42 (2015)CrossRefGoogle Scholar
  39. 39.
    Cisewski, S.E., Zhang, L., Kuo, J., Wright, G.J., Wu, Y., Kem, M.J., Yao, H.: The effects of oxygen level and glucose concentration on the metabolism of porcine TMJ disc cells. Osteoarthr. Cartil. 23(10), 1790–6 (2015)CrossRefGoogle Scholar
  40. 40.
    Wagner, D., Bolender, Y., Rémond, Y., George, D.: Mechanical equilibrium of forces and moments applied on orthodontic brackets of a dental arch : correlation with litterature data on two and three adjacent teeth. Bio-Med. Mat. Eng. 28, S169–S177 (2017)Google Scholar
  41. 41.
    Martin, M., Lemaire, T., Haiat, G., Pivonka, P., Sansalone, V.: A thermodynamically consistent model of bone rotary remodeling: a 2D study. Comp. Meth. Biomech. Biomed. Eng. 20(S1), 127–128 (2017)CrossRefGoogle Scholar
  42. 42.
    Rémond, Y., Ahzi, S., Baniassadi, M., Garmestani, M.: Applied RVE reconstruction and homogenization of heterogeneous materials, Ed. Wiley-ISTE ISBN: 978-1-84821-901-4 (2016)Google Scholar
  43. 43.
    Burr, D.B., Allen, M.R.: Basic and Applied Bone Biology, pp. 85–86. Academic Press, Cambridge (2013)Google Scholar
  44. 44.
    Lemaire, T., Naïli, S., Rémond, A.: Multiscale analysis of the coupled effects governing the movement of interstitial fluid in cortical bone. Biomech. Mod. Mech. 5(1), 39–52 (2006)CrossRefGoogle Scholar
  45. 45.
    Lemaire, T., Naili, S., Sansalone, V.: Multiphysical modelling of fluid transport through osto-articular media. An. Ac. Bras. Ciências 82(1), 127–144 (2010)CrossRefzbMATHGoogle Scholar
  46. 46.
    Lemaire, T., Kaiser, J., Naili, S., Sansalone, V.: Three-scale multiphysics modeling of transport phenomena within cortical bone. Math. Prob. Eng. 398970 (2015)Google Scholar
  47. 47.
    Allena, R., Maini, P.K.: Reaction–diffusion finite element model of lateral line primordium migration to explore cell leadership. Bull. Math. Biol. 76(12), 3028–3050 (2014)CrossRefzbMATHGoogle Scholar
  48. 48.
    Schmitt, M., Allena, R., Schouman, T., Frasca, S., Collombet, J.M., Holy, X., Rouch, P.: Diffusion model to describe osteogenesis within a porous titanium scaffold. Comp. Meth. Biomech. Biomed. Eng. 19(2), 171–179 (2015)CrossRefGoogle Scholar
  49. 49.
    Frame, J., Rohan, P.Y., Corté, L., Allena, R.: A mechano-biological model of mulit-tissue evolution in bone, Cont. Mech. Thermo. 1–13 (2017) (in press).  https://doi.org/10.1007/s00161-017-0611-9
  50. 50.
    George, D., Allena, R., Rémond, Y.: Mechanobiological stimuli for bone remodeling: mechanical energy, cell nutriments and mobility. Comp. Meth. Biomech. Biomed. Eng. 20, S91–S92 (2017)CrossRefGoogle Scholar
  51. 51.
    Hambli, R., Rieger, R.: Physiologically based mathematical model of transduction of mechanobiological signals by osteocytes. Biomech. Model Mechanobiol. 11(1–2), 83–93 (2012)CrossRefGoogle Scholar
  52. 52.
    Hambli, R., Kourta, A.: A theory for internal bone remodeling based on interstitial fluid velocity stimulus function. App. Math. Mod. 39(12), 3525–3534 (2015)MathSciNetCrossRefGoogle Scholar
  53. 53.
    Currey, J.D.: The effect of porosity and mineral content on the Young’s modulus of elasticity of compact bone. J. Biomech. 21(2), 131–139 (1988)CrossRefGoogle Scholar
  54. 54.
    Rho, J.Y., Ho Ba Tho, M.C., Ashman, R.B.: Relations of mechanical properties to density and CT numbers in human bone. Med. Eng. Phys. 17(5), 347–355 (1995)CrossRefGoogle Scholar
  55. 55.
    Gibson, L.J.: The mechanical behaviour of cancellous bone. J. Biomech. 18(5), 317–328 (1985)CrossRefGoogle Scholar
  56. 56.
    Lai, Y.-S., Chen, W.-C., Huang, C.-H., Cheng, C.-K., Chan, K.-K., Chang, T.-K.: The effect of graft strength on knee laxity and graft in-situ forces after posterior cruciate ligament reconstruction. PLoS One 10(5), e0127293 (2015)CrossRefGoogle Scholar
  57. 57.
    Renders, G.A.P., Mulder, L., Van Ruijven, L.J., Van Eijden, T.M.G.J.: Porosity of human mandibular condylar bone. J. Anat. 210(3), 239–248 (2007)CrossRefGoogle Scholar
  58. 58.
    Burr, D.B., Allen, M.R.: Basic and Applied Bone Biology. Elsevier Inc, Amsterdam (2013)Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.ICUBE, CNRSUniversity of StrasbourgStrasbourgFrance
  2. 2.Arts et Métiers ParisTech, LBM/Institut de Biomécanique Humaine Georges CharpakParisFrance

Personalised recommendations