Micromechanical behaviour of Ni-based superalloys close to the yield point: a comparative study between neutron diffraction on different polycrystalline microstructures and crystal plasticity finite element modelling

  • Jonas von KobylinskiEmail author
  • Robert Lawitzki
  • Michael Hofmann
  • Christian Krempaszky
  • Ewald Werner
Original Article


To investigate the microstructure-dependent relationships in polycrystalline Ni-based superalloys (Haynes 282 and Inconel 718) deformed in the elastoplastic regime, the lattice strain evolution along various macroscopic directions and along various crystallographic directions is monitored via in situ neutron diffraction during uniaxial tensile loading. In addition, a crystal plasticity-based finite element model is set up to describe the micromechanical behaviour of a unit cell within a uniaxially loaded polycrystalline aggregate. Appropriate postprocessing of the (micromechanical) field quantities allows to simulate the diffraction experiment and thus to directly compare and to discuss experimental and modelling results.


Neutron diffraction Crystal plasticity Nickel-based superalloy In situ tension test 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



We gratefully acknowledge the DFG for funding this research within projects KR 3687/3-1, HO 3322/3-1 and WA 3676/1-1. In addition, the authors thank the German neutron source FRM II for providing beam time at instruments STRESS-SPEC and SPODI and the instrument scientist M. Hölzel for his support during and after the powder diffraction measurement.


  1. 1.
    Wagner, J., Hofmann, M., Wimpory, R., Krempaszky, C., Stockinger, M.: Microstructure and temperature dependence of intergranular strains on diffractometric macroscopic residual stress analysis. Mater. Sci. Eng. A 618, 271–279 (2014)CrossRefGoogle Scholar
  2. 2.
    Pike, L.: HAYNES® 282™alloy: a new wrought superalloy designed for improved creep strength and fabricability. In: ASME Turbo Expo 2006: Power for Land, Sea, and Air, pp. 1031–1039 (2006)Google Scholar
  3. 3.
    Wagner, J.N., Hofmann, M., Van Petegem, S., Krempaszky, C., Hoelzel, M., Stockinger, M.: Comparison of intergranular strain formation of conventional and newly developed nickel based superalloys. Mater. Sci. Eng. A 662, 303–307 (2016)CrossRefGoogle Scholar
  4. 4.
    Abdolvand, H., Daymond, M.R.: Internal strain and texture development during twinning: comparing neutron diffraction measurements with crystal plasticity finite-element approaches. Acta Mater. 60, 2240–2248 (2012)CrossRefGoogle Scholar
  5. 5.
    Song, X., Zhang, S.Y., Dini, D., Korsunsky, A.M.: Finite element modelling and diffraction measurement of elastic strains during tensile deformation of HCP polycrystals. Comput. Mater. Sci. 44, 131–137 (2008)CrossRefGoogle Scholar
  6. 6.
    Delannay, L., Jacques, P.J., Kalidindi, S.R.: Finite element modeling of crystal plasticity with grains shaped as truncated octahedrons. Int. J. Plast. 22, 1879–1898 (2006)CrossRefGoogle Scholar
  7. 7.
    Woo, W., Em, V., Kim, E.-Y., Han, S., Han, Y., Choi, S.-H.: Stress–strain relationship between ferrite and martensite in a dual-phase steel studied by in situ neutron diffraction and crystal plasticity theories. Acta Mater. 60, 6972–6981 (2012)CrossRefGoogle Scholar
  8. 8.
    Clausen, B., Tomé, C., Brown, D., Agnew, S.: Reorientation and stress relaxation due to twinning: modeling and experimental characterization for Mg. Acta Mater. 56, 2456–2468 (2008)CrossRefGoogle Scholar
  9. 9.
    Hoelzel, M., Senyshyn, A., Juenke, N., Boysen, H., Schmahl, W., Fuess, H.: High-resolution neutron powder diffractometer SPODI at research reactor FRM II. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrom. Detect. Assoc. Equip. 667, 32–37 (2012)ADSCrossRefGoogle Scholar
  10. 10.
    Rietveld, H.M.: A profile refinement method for nuclear and magnetic structures. J. Appl. Crystallogr. 2, 65–71 (1969)CrossRefGoogle Scholar
  11. 11.
    Rodriguez-Carvajal, J.: FULLPROF: a program for Rietveld refinement and pattern matching analysis. In: Satellite Meeting on Powder Diffraction of the XV Congress of the IUCr, vol. 127 (1990)Google Scholar
  12. 12.
    Howard, C., Kisi, E.: Measurement of single-crystal elastic constants by neutron diffraction from polycrystals. J. Appl. Crystallogr. 32, 624–633 (1999)CrossRefGoogle Scholar
  13. 13.
    He, B.B.: Two-Dimensional X-Ray Diffraction. Wiley, New York (2018)CrossRefGoogle Scholar
  14. 14.
    Hoelzel, M., Gan, W., Hofmann, M., Randau, C., Seidl, G., Jüttner, P., Schmahl, W.W.: Rotatable multifunctional load frames for neutron diffractometers at FRM II-design, specifications and applications. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrom. Detect. Assoc. Equip. 711, 101–105 (2013)ADSCrossRefGoogle Scholar
  15. 15.
    Hutchings, M.T., Withers, P.J., Holden, T.M., Lorentzen, T.: Introduction to the Characterization of Residual Stress by Neutron Diffraction. CRC Press, Boca Raton (2005)Google Scholar
  16. 16.
    Wu, L., Agnew, S., Brown, D., Stoica, G., Clausen, B., Jain, A., Fielden, D., Liaw, P.: Internal stress relaxation and load redistribution during the twinning-detwinning-dominated cyclic deformation of a wrought magnesium alloy, ZK60A. Acta Mater. 56, 3699–3707 (2008)CrossRefGoogle Scholar
  17. 17.
    Quey, R., Dawson, P., Barbe, F.: Large-scale 3D random polycrystals for the finite element method: generation, meshing and remeshing. Comput. Methods Appl. Mech. Eng. 200, 1729–1745 (2011)ADSCrossRefGoogle Scholar
  18. 18.
    Werner, E., Wesenjak, R., Fillafer, A., Meier, F., Krempaszky, C.: Microstructure-based modelling of multiphase materials and complex structures. Contin. Mech. Thermodyn. 28, 1325–1346 (2016)ADSMathSciNetCrossRefGoogle Scholar
  19. 19.
    Roters, F., Eisenlohr, P., Hantcherli, L., Tjahjanto, D.D., Bieler, T.R., Raabe, D.: Overview of constitutive laws, kinematics, homogenization and multiscale methods in crystal plasticity finite-element modeling: theory, experiments, applications. Acta Mater. 58, 1152–1211 (2010)CrossRefGoogle Scholar
  20. 20.
    Roters, F.: Advanced material models for the crystal plasticity finite element method: development of a general CPFEM framework. Technical Report Fachgruppe für Materialwissenschaft und Werkstofftechnik (2011)Google Scholar
  21. 21.
    Roters, F., Eisenlohr, P., Kords, C., Tjahjanto, D., Diehl, M., Raabe, D.: DAMASK: the Düsseldorf advanced material simulation kit for studying crystal plasticity using an FE based or a spectral numerical solver. Proc. IUTAM 3, 3–10 (2012)CrossRefGoogle Scholar
  22. 22.
    Meier, F., Schwarz, C., Werner, E.: Crystal-plasticity based thermo-mechanical modeling of Al-components in integrated circuits. Comput. Mater. Sci. 94, 122–131 (2014)CrossRefGoogle Scholar
  23. 23.
    Roters, F., Diehl, M., Shanthraj, P., Eisenlohr, P., Reuber, C., Wong, S.L., Ma, D., Jia, N., Kok, P.J.J., Fujita, N., Ebrahimi, A., Hochrainer, T., Grilli, N., Janssens, K.G.F., Stricker, M., Weygand, D., Meier, F., Werner, E., Fabritius, H.-O., Nikolov, S., Friák, M., Raabe, D.: DAMASK: the Düsseldorf advanced material simulation Kit for modelling multi-physics crystal plasticity, damage, and thermal phenomena from the single crystal up to the component scale. Comput. Mater. Sci (2018) (in press)Google Scholar
  24. 24.
    Kanrar, A., Ghosh, U.: The elastic stiffness coefficients of nickel–iron single-crystal alloys at room temperature. J. Appl. Phys. 52, 5851–5852 (1981)ADSCrossRefGoogle Scholar
  25. 25.
    Wallow, F., Neite, G., Schröer, W., Nembach, E.: Stiffness constants, dislocation line energies, and tensions of Ni3Al and of the \(\gamma ^{\prime }\)-phases of NIMONIC 105 and of NIMONIC PE16. Phys. Status Solidi (a) 99, 483–490 (1987)ADSCrossRefGoogle Scholar
  26. 26.
    Jablonski, P.D., Cowen, C.J., Hawk, J.A.: Effects of Al and Ti on Haynes 282 with fixed gamma prime content. In" Proceedings of the 7th International Symposium on Superalloy 718 and Derivatives, pp 617–628 (2012)Google Scholar
  27. 27.
    Grant, B.M., Francis, E.M., da Fonseca, J.Q., Daymond, M.R., Preuss, M.: Deformation behaviour of an advanced nickel-based superalloy studied by neutron diffraction and electron microscopy. Acta Mater. 60, 6829–6841 (2012)CrossRefGoogle Scholar
  28. 28.
    Fillafer, A., Werner, E., Krempaszky, C.: On phase transformation induced effects controlling the initial flow behavior of ferritic-martensitic dual-phase steels. Mater. Sci. Eng. A 708, 556–562 (2017)CrossRefGoogle Scholar
  29. 29.
    Merrick, H.: The low cycle fatigue of three wrought nickel-base alloys. Metall. Trans. 5, 891–897 (1974)CrossRefGoogle Scholar
  30. 30.
    Bouaziz, O., Guelton, N.: Modelling of TWIP effect on work-hardening. Mater. Sci. Eng. A 319, 246–249 (2001)CrossRefGoogle Scholar
  31. 31.
    Han, G., Jones, I., Smallman, R.: Direct evidence for Suzuki segregation and Cottrell pinning in MP159 superalloy obtained by FEG (S) TEM/EDX. Acta Mater. 51, 2731–2742 (2003)CrossRefGoogle Scholar
  32. 32.
    Titus, M.S., Mottura, A., Viswanathan, G.B., Suzuki, A., Mills, M.J., Pollock, T.M.: High resolution energy dispersive spectroscopy mapping of planar defects in L12-containing co-base superalloys. Acta Mater. 89, 423–437 (2015)CrossRefGoogle Scholar
  33. 33.
    Barba, D., Smith, T., Miao, J., Mills, M., Reed, R.: Segregation-assisted plasticity in Ni-based superalloys. Metall. Mater. Trans. A 49, 1–13 (2018)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Jonas von Kobylinski
    • 1
    Email author
  • Robert Lawitzki
    • 2
  • Michael Hofmann
    • 3
  • Christian Krempaszky
    • 1
  • Ewald Werner
    • 1
  1. 1.Institute of Materials Science and Mechanics of MaterialsTechnical University of MunichGarchingGermany
  2. 2.Institute of Materials Science, Chair of Materials PhysicsUniversity of StuttgartStuttgartGermany
  3. 3.Research Neutron Source Heinz Maier-Leibnitz (FRM II)Technical University of MunichGarchingGermany

Personalised recommendations