Advertisement

Verification of deforming polarized structure computation by using a closed-form solution

  • B. Emek Abali
  • Felix A. Reich
Original Article
  • 17 Downloads

Abstract

Various engineering systems exploit the conversion between electromagnetic and mechanical work. It is important to compute this coupling accurately, and we present a method for solving the governing equations simultaneously (at once) without a staggering scheme. We briefly present the theory for coupling the elecgoverning equations as well as the variational formulation that leads to the weak form. This weak form is nonlinear and couples various fields. In order to solve the weak form, we use the finite element method in space and the finite difference method in time for the discretization of the computational domain. Numerical problems are circumvented by selecting the field equations carefully, and the weak form is assembled using standard shape functions. In order to examine the accuracy of the method, for the case of a linear elastic material under small deformations, we present and use an analytic solution. Comparison of the computation to the closed-form solution shows that the computational approach is reliable and models the jump of the electromagnetic fields across the interface between two different materials.

Keywords

Mechanics Electromagnetism Finite element method 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

References

  1. 1.
    Abali, B.E., Queiruga, A.F.: Theory and computation of electromagnetic fields and thermomechanical structure interaction for systems undergoing large deformations (2018). ArXiv preprint arXiv:1803.10551
  2. 2.
    Abali, B.E.: Computational Reality, Solving Nonlinear and Coupled Problems in Continuum Mechanics. Advanced Structured Materials. Springer, Berlin (2016)Google Scholar
  3. 3.
    Abali, B.E.: Technical University of Berlin, Institute of Mechanics, Chair of Continuum Mechanics and Material Theory, Computational Reality. http://www.lkm.tu-berlin.de/ComputationalReality/ (2016)
  4. 4.
    Abali, B.E., Reich, F.A.: Thermodynamically consistent derivation and computation of electro-thermo-mechanical systems for solid bodies. Comput. Methods Appl. Mech. Eng. 319, 567–595 (2017)ADSMathSciNetCrossRefGoogle Scholar
  5. 5.
    Andreaus, U., dell’Isola, F., Porfiri, M.: Piezoelectric passive distributed controllers for beam flexural vibrations. Modal Anal. 10(5), 625–659 (2004)CrossRefGoogle Scholar
  6. 6.
    Arnold, D.N., Logg, A.: Periodic table of the finite elements. SIAM News 47(9), 212 (2014)Google Scholar
  7. 7.
    Barchiesi, E., Spagnuolo, M., Placidi, L.: Mechanical metamaterials: a state of the art. Math. Mech. Solids (2018).  https://doi.org/10.1177/1081286517735695 CrossRefGoogle Scholar
  8. 8.
    Barnett, S.M.: Resolution of the Abraham-Minkowski dilemma. Phys. Rev. Lett. 104(7), 070401 (2010)ADSCrossRefGoogle Scholar
  9. 9.
    Baumanns, S., Clemens, M., Schops, S.: Structural aspects of regularized full maxwell electrodynamic potential formulations using fit. In: Proceedings of 2013 URSI International Symposium on Electromagnetic Theory (EMTS), pp. 1007–1010. IEEE (2013)Google Scholar
  10. 10.
    Benjeddou, A.: Advances in piezoelectric finite element modeling of adaptive structural elements: a survey. Comput. Struct. 76(1), 347–363 (2000)CrossRefGoogle Scholar
  11. 11.
    Bethune-Waddell, M., Chau, K.J.: Simulations of radiation pressure experiments narrow down the energy and momentum of light in matter. Rep. Prog. Phys. 78(12), 122401 (2015)ADSCrossRefGoogle Scholar
  12. 12.
    Bossavit, A.: Whitney forms: a class of finite elements for three-dimensional computations in electromagnetism. IEE Proc. A (Phys. Sci. Meas. Instrum. Manag. Educ. Rev.) 135(8), 493–500 (1988)CrossRefGoogle Scholar
  13. 13.
    Ciarlet Jr., P., Zou, J.: Fully discrete finite element approaches for time-dependent Maxwell’s equations. Numer. Math. 82(2), 193–219 (1999)MathSciNetCrossRefGoogle Scholar
  14. 14.
    de Groot, S.R., Mazur, P.: Non-equilibrium thermodynamics. Dover Publications, New York (1984)zbMATHGoogle Scholar
  15. 15.
    Del Bufalo, G., Placidi, L., Porfiri, M.: A mixture theory framework for modeling the mechanical actuation of ionic polymer metal composites. Smart Mater. Struct. 17(4), 045010 (2008)ADSCrossRefGoogle Scholar
  16. 16.
    Del Vescovo, D., Giorgio, I.: Dynamic problems for metamaterials: review of existing models and ideas for further research. Int. J. Eng. Sci. 80, 153–172 (2014)MathSciNetCrossRefGoogle Scholar
  17. 17.
    dell’Isola, F., Steigmann, D., Della Corte, A.: Synthesis of fibrous complex structures: designing microstructure to deliver targeted macroscale response. Appl. Mech. Rev. 67(6), 060804 (2015).  https://doi.org/10.1115/1.4032206 CrossRefGoogle Scholar
  18. 18.
    Demkowicz, L.: Computing with hp-adaptive Finite Elements: Volume 1 One and Two Dimensional Elliptic and Maxwell Problems. CRC Press, Boca Raton (2006)CrossRefGoogle Scholar
  19. 19.
    Erbts, P., Hartmann, S., Düster, A.: A partitioned solution approach for electro-thermo-mechanical problems. Arch. Appl. Mech. 85(8), 1075–1101 (2015)ADSCrossRefGoogle Scholar
  20. 20.
    Eremeyev, V.A., Nasedkin, A.V., Solov’yev, A.N.: Partitioned schemes of the finite-element method for dynamic problems of acoustoelectroelasticity. J. Appl. Math. Mech. 64(3), 367–377 (2000)CrossRefGoogle Scholar
  21. 21.
    Ericksen, J.L.: On formulating and assessing continuum theories of electromagnetic fields in elastic materials. J. Elast. 87(2–3), 95–108 (2007)MathSciNetCrossRefGoogle Scholar
  22. 22.
    Gillette, A., Rand, A., Bajaj, C.: Construction of scalar and vector finite element families on polygonal and polyhedral meshes. Comput. Methods Appl. Math. 16(4), 667–683 (2016)MathSciNetCrossRefGoogle Scholar
  23. 23.
    Giorgio, I., Galantucci, L., Corte, A.D., Vescovo, D.D.: Piezo-electromechanical smart materials with distributed arrays of piezoelectric transducers: current and upcoming applications. Int. J. Appl. Electromagn. Mech. 47(4), 1051–1084 (2015)CrossRefGoogle Scholar
  24. 24.
    Glane, S., Reich, F.A., Müller, W.H.: Modeling of non-ideal hard permanent magnets with an affine-linear model, illustrated for a bar and a horseshoe magnet. Contin. Mech. Thermodyn. 29, 1313–1333 (2017)ADSMathSciNetCrossRefGoogle Scholar
  25. 25.
    GNU Public. Gnu general public license. http://www.gnu.org/copyleft/gpl.html (2007)
  26. 26.
    Griffiths, D.J.: Resource letter EM-1: electromagnetic momentum. Am. J. Phys. 80(1), 7–18 (2012)ADSCrossRefGoogle Scholar
  27. 27.
    Griffiths, D.J., College, R.: Introduction to Electrodynamics, vol. 3. Prentice Hall, Upper Saddle River (1999)Google Scholar
  28. 28.
    Hachkevych, O.R., Terlets’kyi, R.F.: Models of thermomechanics of magnetizable and polarizable conducting deformable solids. Mater. Sci. 40(3), 320–336 (2004)CrossRefGoogle Scholar
  29. 29.
    Hiramatsu, Y., Oka, Y.: Determination of the tensile strength of rock by a compression test of an irregular test piece. Int. J. Rock Mech. Min. Sci. Geomech. Abstr. 3(2), 89–90 (1966)CrossRefGoogle Scholar
  30. 30.
    Jones, D.S.: The Theory of Electromagnetism. Pergamon, New York (1964)zbMATHGoogle Scholar
  31. 31.
    Li, J.: Numerical convergence and physical fidelity analysis for Maxwell’s equations in metamaterials. Comput. Methods Appl. Mech. Eng. 198(37), 3161–3172 (2009)ADSMathSciNetCrossRefGoogle Scholar
  32. 32.
    Lorentz, H.A.: Zittungsverlagen akad. van wettenschappen 1, 74 (Nov. 26, 1892); versuch einer theorie der elektrischen und optischen erscheinungen in bewegten körpern, brill, leiden, 1895. Proc. Acad. Sci. (Amsterdam) (Engl. version), 6:809 (1904)Google Scholar
  33. 33.
    Low, F.E.: Classical Field Theory: Electromagnetism and Gravitation. Wiley-VCH, Weinheim (2004)Google Scholar
  34. 34.
    Mansuripur, M.: Resolution of the Abraham–Minkowski controversy. Opt. Commun. 283(10), 1997–2005 (2010)ADSCrossRefGoogle Scholar
  35. 35.
    Misra, A., Poorsolhjouy, P.: Identification of higher-order elastic constants for grain assemblies based upon granular micromechanics. Math. Mech. Complex Syst. 3(3), 285–308 (2015)MathSciNetCrossRefGoogle Scholar
  36. 36.
    Müller, I.: Thermodynamics. Pitman Publishing, London (1985)zbMATHGoogle Scholar
  37. 37.
    Nédélec, J.-C.: Mixed finite elements in R3. Numer. Math. 35(3), 315–341 (1980)MathSciNetCrossRefGoogle Scholar
  38. 38.
    Obukhov, Y.N.: Electromagnetic energy and momentum in moving media. Annalen der Physik 17(9–10), 830–851 (2008)ADSMathSciNetCrossRefGoogle Scholar
  39. 39.
    Placidi, L., Andreaus, U., Corte, A.D., Lekszycki, T.: Gedanken experiments for the determination of two-dimensional linear second gradient elasticity coefficients. Zeitschrift für angewandte Mathematik und Physik 66(6), 3699–3725 (2015)ADSMathSciNetCrossRefGoogle Scholar
  40. 40.
    Queiruga, A.F., Zohdi, T.I.: Formulation and numerical analysis of a fully-coupled dynamically deforming electromagnetic wire. Comput. Methods Appl. Mech. Eng. 305, 292–315 (2016)ADSMathSciNetCrossRefGoogle Scholar
  41. 41.
    Raviart, P.-A., Thomas, J.-M.: A mixed finite element method for 2-nd order elliptic problems. In: Mathematical Aspects of Finite Element Methods, pp. 292–315. Springer (1977)Google Scholar
  42. 42.
    Reich, F.A.: Coupling of continuum mechanics and electrodynamics: an investigation of electromagnetic force models by means of experiments and selected problems. Ph.D. thesis, TU Berlin (2017)Google Scholar
  43. 43.
    Reich, F.A., Stahn, O., Müller, W.H.: A review of electrodynamics and its coupling with classical balance equations. In: Advanced Problems in Mechanics, International Summer School–Conference Proceedings, pp. 367–376. Institute for Problems in Mechanical Engineering, 22 June 2015–27 June 2015, St. Petersburg, Russia (2015)Google Scholar
  44. 44.
    Steigmann, D.J.: On the formulation of balance laws for electromagnetic continua. Math. Mech. Solids 14(4), 390–402 (2009)MathSciNetCrossRefGoogle Scholar
  45. 45.
    Svendsen, B., Chanda, T.: Continuum thermodynamic formulation of models for electromagnetic thermoinelastic solids with application in electromagnetic metal forming. Contin. Mech. Thermodyn. 17(1), 1–16 (2005)ADSMathSciNetCrossRefGoogle Scholar
  46. 46.
    Turco, E.: Tools for the numerical solution of inverse problems in structural mechanics: review and research perspectives. Eur. J. Environ. Civ. Eng. 21(5), 509–554 (2017)MathSciNetCrossRefGoogle Scholar
  47. 47.
    Vidal, P., D’Ottavio, M., Thaïer, M.B., Polit, O.: An efficient finite shell element for the static response of piezoelectric laminates. J. Intell. Mater. Syst. Struct. 22(7), 671–690 (2011)CrossRefGoogle Scholar
  48. 48.
    Zohdi, T.I.: Electromagnetic Properties of Multiphase Dielectrics: A Primer on Modeling, Theory and Computation, vol. 64. Springer, Berlin (2012)zbMATHGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Chair of Continuum Mechanics and Constitutive Theory, Institute of MechanicsTechnische Universität BerlinBerlinGermany

Personalised recommendations