Advertisement

Ordinary state-based peridynamic modelling for fully coupled thermoelastic problems

Open Access
Original Article
  • 22 Downloads

Abstract

An ordinary state-based peridynamic model is developed for transient fully coupled thermoelastic problems. By adopting an integral form instead of spatial derivatives in the equation of motion, the developed model is still valid at discontinuities. In addition, the ordinary state-based peridynamic model eliminates the limitation on Poisson’s ratio which exists in bond-based peridynamics. Interactions between thermal and structural responses are also considered by including the coupling terms in the formulations. These formulations are also cast into their non-dimensional forms. Validation of the new model is conducted by solving some benchmark problems and comparing them with other numerical solutions. Thin plate and block under shock-loading conditions are investigated. Good agreements are obtained by comparing the thermal and mechanical responses with those obtained from boundary element method and finite element solutions. Subsequently, a three-point bending test simulation is conducted by allowing crack propagation. Then a crack propagation for a plate with a pre-existing crack is investigated under pressure shock-loading condition. Finally, a numerical simulation based on the Kalthoff experiment is conducted in a fully coupled manner. The crack propagation processes and the temperature evolutions are presented. In conclusion, the present model is suitable for modelling thermoelastic problems in which discontinuities exist and coupling effects cannot be neglected.

Keywords

State-based peridynamics Fully coupled Thermoelasticity Crack propagation 

List of symbols

A

Cross-sectional area for one-dimensional problems \(\left( \hbox {m}^{2} \right) \)

\(c_\mathrm{v}\)

Specific heat capacity under constant volume \([{\hbox {J}/\left( {\hbox {kg\,K}} \right) }]\)

E

Young’s modulus \(\left( {\hbox {Pa}} \right) \)

\(G_\mathrm{c}\)

Critical energy release rate \(\left( {\hbox {J/m}^{{2}}} \right) \)

h

Thickness for two-dimensional problems \(\left( \hbox {m} \right) \)

\(K_\theta \)

Bulk modulus \(\left( {\hbox {GPa}} \right) \)

\(k_\mathrm{T}\)

Thermal conductivity \([{\hbox {W}/\left( {\hbox {mK}} \right) }]\)

\(\mathbf{u}\left( \mathbf{x},t \right) \)

Displacement of point \(\mathbf{x}\) at time \(t \left( \hbox {m} \right) \)

\(\dot{\mathbf{u}}\left( \mathbf{x},t \right) \)

Velocity of point \(\mathbf{x}\) at time \(t \left( {\hbox {m/s}} \right) \)

\(\ddot{\mathbf{u}}\left( \mathbf{x},t \right) \)

Acceleration of point \(\mathbf{x}\) at time \(t \left( \hbox {m/s}^{2} \right) \)

\(u_x \left( \mathbf{x},t \right) \)

Scalar value of horizontal displacement of point \(\mathbf{x}\) at time \(t \left( \hbox {m} \right) \)

\(\alpha \)

Linear thermal expansion coefficient \(\left( {\hbox {K}^{-1}} \right) \)

\(\beta _\mathrm{cl}\)

Thermal modulus in classical mechanics \(\left( {\hbox {Pa/K}} \right) \)

\(\Theta _0\)

Reference temperature \(\left( \hbox {K} \right) \)

\(\lambda ,\;\mu \)

Lamé constants \(\left( {\hbox {GPa}} \right) \)

\(\nu \)

Poisson’s ratio

\(\rho \)

Density \(\left( {\hbox {kg/m}^{3}} \right) \)

\({V}'\)

Volume of point \(\mathbf{x}' \left( {\hbox {m}^{3}} \right) \)

\(\Theta \left( \mathbf{x},t \right) \)

Absolute temperature of point \(\mathbf{x}\) at time \(t \left( \hbox {K} \right) \)

\(T\left( \mathbf{x},t \right) \)

Temperature change of point \(\mathbf{x}\) at time \(t \,\,\left( \hbox {K} \right) \)

\(\dot{T}\left( {\mathbf{x},t} \right) \)

Time rate of temperature change of point \(\mathbf{x}\) at time \(t \left( {\hbox {K/s}} \right) \)

\(u_y \left( \mathbf{x},t \right) \)

Scalar value of vertical displacement of point \(\mathbf{x}\) at time \(t \,\,\left( \hbox {m} \right) \)

Notes

References

  1. 1.
    Spitsberg, I., Steibel, J.: Thermal and environmental barrier coatings for SiC/Sic CMCs in aircraft engine applications. Int. J. Appl. Ceram. Technol. 1(4), 291–301 (2004)CrossRefGoogle Scholar
  2. 2.
    Nali, P., Carrera, E., Calvi, A.: Advanced fully coupled thermo-mechanical plate elements for multilayered structures subjected to mechanical and thermal loading. Int. J. Numer. Meth. Eng. 85(7), 896–919 (2011)MathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    Biot, M.A.: Thermoelasticity and irreversible thermodynamics. J. Appl. Phys. 27(3), 240–253 (1956)MathSciNetCrossRefMATHADSGoogle Scholar
  4. 4.
    Herrmann, G.: On variational principles in thermoelasticity and heat conduction. Q. Appl. Math. 21(2), 151–155 (1963)MathSciNetCrossRefMATHGoogle Scholar
  5. 5.
    Jabbari, M., Dehbani, H., Eslami, M.R.: An exact solution for classic coupled thermoelasticity in spherical coordinates. J. Press. Vessel Technol. 132(3), 031201–031211 (2010)CrossRefGoogle Scholar
  6. 6.
    Jabbari, M., Dehbani, H., Eslami, M.R.: An exact solution for classic coupled thermoelasticity in cylindrical coordinates. J. Press. Vessel Technol. 133(5), 051204–051210 (2011)CrossRefGoogle Scholar
  7. 7.
    Dillon, O., Tauchert, T.: The experimental technique for observing the temperatures due to the coupled thermoelastic effect. Int. J. Solids Struct. 2(3), 385–391 (1966)CrossRefGoogle Scholar
  8. 8.
    Abali, B.E.: Computational Reality: Solving Nonlinear and Coupled Problems in Continuum Mechanics, vol. 55. Springer, New York (2016)MATHGoogle Scholar
  9. 9.
    Cannarozzi, A.A., Ubertini, F.: A mixed variational method for linear coupled thermoelastic analysis. Int. J. Solids Struct. 38(4), 717–739 (2001)CrossRefMATHGoogle Scholar
  10. 10.
    Tehrani, P.H., Eslami, M.R.: Boundary element analysis of coupled thermoelasticity with relaxation times in finite domain. AIAA J. 38(3), 534–541 (2000)CrossRefADSGoogle Scholar
  11. 11.
    Atkinson, C., Craster, R.V.: Fracture in fully coupled dynamic thermoelasticity. J. Mech. Phys. Solids 40(7), 1415–1432 (1992)CrossRefMATHADSGoogle Scholar
  12. 12.
    Weichert, R., Schönert, K.: Heat generation at the tip of a moving crack. J. Mech. Phys. Solids 26(3), 151–161 (1978)CrossRefMATHADSGoogle Scholar
  13. 13.
    Bhalla, K.S., Zehnder, A.T., Han, X.: Thermomechanics of slow stable crack growth: closing the loop between experiments and computational modeling. Eng. Fract. Mech. 70(17), 2439–2458 (2003)CrossRefGoogle Scholar
  14. 14.
    Miehe, C., Schanzel, L.M., Ulmer, H.: Phase field modeling of fracture in multi-physics problems. Part I. Balance of crack surface and failure criteria for brittle crack propagation in thermo-elastic solids. Comput. Method Appl. Mech. 294, 449–485 (2015)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Silling, S.A.: Reformulation of elasticity theory for discontinuities and long-range forces. J. Mech. Phys. Solids 48(1), 175–209 (2000)MathSciNetCrossRefMATHADSGoogle Scholar
  16. 16.
    Dell’Isola, F., Ugo, A., Luca, P.: At the origins and in the vanguard of peridynamics, non-local and higher-gradient continuum mechanics: an underestimated and still topical contribution of Gabrio Piola. Math. Mech. Solids. 20(8), 887–928 (2015)MathSciNetCrossRefMATHGoogle Scholar
  17. 17.
    Eugster, S.R., Dell’Isola, F.: Exegesis of the introduction and Sect. I from Fundamentals of the Mechanics of Continua by E. Hellinger. ZAMM - Zeitschrift für Angewandte Mathematik und Mechanik. 97(4), 477–506 (2017)MathSciNetCrossRefADSGoogle Scholar
  18. 18.
    Eugster, S.R., Dell’Isola, F.: Exegesis of Sect. II and III.A from Fundamentals of the Mechanics of Continua by E. Hellinger. ZAMM - Journal of Applied Mathematics and Mechanics / Zeitschrift für Angewandte Mathematik und Mechanik. (2017).  https://doi.org/10.1002/zamm.201600293
  19. 19.
    Eugster, S.R., Dell’Isola, F.: Exegesis of Sect. III.B from Fundamentals of the Mechanics of Continua by E. Hellinger. ZAMM - Journal of Applied Mathematics and Mechanics / Zeitschrift für Angewandte Mathematik und Mechanik. 98(1), 69–105 (2017)MathSciNetCrossRefGoogle Scholar
  20. 20.
    Dell’Isola, F., Alessandro, D.C., Ivan, G.: Higher-gradient continua: the legacy of Piola, Mindlin, Sedov and Toupin and some future research perspectives. Math. Mech. Solids. (2016).  https://doi.org/10.1177/1081286515616034 MATHGoogle Scholar
  21. 21.
    Dell’Isola, F., Alessandro D.C., Raffaele, E., Lucio, R.: Some cases of unrecognized transmission of scientific knowledge: from antiquity to gabrio piola’s peridynamics and generalized continuum theories. In: Generalized continua as models for classical and advanced materials, vol. 42, pp 77–128. Springer, Cham (2016)Google Scholar
  22. 22.
    Demmie, P.N., Silling, S.A.: An approach to modeling extreme loading of structures using peridynamics. J. Mech. Mater. Struct. 2(10), 1921–1945 (2007)CrossRefGoogle Scholar
  23. 23.
    Silling, S., Weckner, O., Askari, E., Bobaru, F.: Crack nucleation in a peridynamic solid. Int. J. Fract. 162(1–2), 219–227 (2010)CrossRefMATHGoogle Scholar
  24. 24.
    Ha, Y.D., Bobaru, F.: Characteristics of dynamic brittle fracture captured with peridynamics. Eng. Fract. Mech. 78(6), 1156–1168 (2011)CrossRefGoogle Scholar
  25. 25.
    Huang, D., Lu, G.D., Qiao, P.Z.: An improved peridynamic approach for quasi-static elastic deformation and brittle fracture analysis. Int. J. Mech. Sci. 94–95, 111–122 (2015)CrossRefGoogle Scholar
  26. 26.
    Hu, W.K., Ha, Y.D., Bobaru, F.: Peridynamic model for dynamic fracture in unidirectional fiber-reinforced composites. Comput. Method Appl. Mech. 217, 247–261 (2012)MathSciNetCrossRefMATHGoogle Scholar
  27. 27.
    Bobaru, F., Hu, W.K.: The meaning, selection, and use of the peridynamic horizon and its relation to crack branching in brittle materials. Int. J. Fract. 176(2), 215–222 (2012)CrossRefGoogle Scholar
  28. 28.
    Agwai, A., Guven, I., Madenci, E.: Predicting crack propagation with peridynamics: a comparative study. Int. J. Fract. 171(1), 65–78 (2011)CrossRefMATHGoogle Scholar
  29. 29.
    Vazic, B., Wang, H., Diyaroglu, C., Oterkus, S., Oterkus, E.: Dynamic propagation of a macrocrack interacting with parallel small cracks. AIMS Mater. Sci. 4(1), 118–136 (2017)CrossRefGoogle Scholar
  30. 30.
    Wang, H., Oterkus, E., Celik, S., Toros, S.: Thermomechanical analysis of porous solid oxide fuel cell by using peridynamics. AIMS Energy 5(4), 585–600 (2017)CrossRefGoogle Scholar
  31. 31.
    Oterkus, S., Madenci, E., Oterkus, E., Hwang, Y., Bae, J., Han, S.: Hygro-thermo-mechanical analysis and failure prediction in electronic packages by using peridynamics. In: 2014 IEEE 64th Electronic Components and Technology Conference (ECTC), pp. 973–982. IEEE (2014Google Scholar
  32. 32.
    Amani, J., Oterkus, E., Areias, P., Zi, G., Nguyen-Thoi, T., Rabczuk, T.: A non-ordinary state-based peridynamics formulation for thermoplastic fracture. Int. J. Impact Eng. 87, 83–94 (2016)CrossRefGoogle Scholar
  33. 33.
    Diyaroglu, C., Oterkus, E., Madenci, E., Rabczuk, T., Siddiq, A.: Peridynamic modeling of composite laminates under explosive loading. Compos. Struct. 144, 14–23 (2016)CrossRefGoogle Scholar
  34. 34.
    Diyaroglu, C., Oterkus, E., Oterkus, S., Madenci, E.: Peridynamics for bending of beams and plates with transverse shear deformation. Int. J. Solids Struct. 69, 152–168 (2015)CrossRefGoogle Scholar
  35. 35.
    Oterkus, E., Madenci, E.: Peridynamics for failure prediction in composites. In: 53rd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference 20th AIAA/ASME/AHS Adaptive Structures Conference 14th AIAA. p. 1692 (2012)Google Scholar
  36. 36.
    Oterkus, S., Madenci, E.: Peridynamics for antiplane shear and torsional deformations. J. Mech. Mater. Struct 10, 167–193 (2015)MathSciNetCrossRefGoogle Scholar
  37. 37.
    Oterkus, S., Fox, J., Madenci, E.: Simulation of electro-migration through peridynamics. In: 2013 IEEE 63rd Electronic Components and Technology Conference (ECTC). pp. 1488–1493. IEEE (2013)Google Scholar
  38. 38.
    Oterkus, S., Madenci, E., Oterkus, E.: Fully coupled poroelastic peridynamic formulation for fluid-filled fractures. Eng. Geol. 225, 19–28 (2017)CrossRefMATHGoogle Scholar
  39. 39.
    Oterkus, S., Madenci, E., Agwai, A.: Peridynamic thermal diffusion. J. Comput. Phys. 265, 71–96 (2014)MathSciNetCrossRefMATHADSGoogle Scholar
  40. 40.
    Oterkus, S., Madenci, E.: Peridynamic modeling of fuel pellet cracking. Eng. Fract. Mech. 176, 23–37 (2017)CrossRefGoogle Scholar
  41. 41.
    Bobaru, F., Duangpanya, M.: A peridynamic formulation for transient heat conduction in bodies with evolving discontinuities. J. Comput. Phys. 231(7), 2764–2785 (2012)MathSciNetCrossRefMATHADSGoogle Scholar
  42. 42.
    Bobaru, F., Duangpanya, M.: The peridynamic formulation for transient heat conduction. Int. J. Heat Mass Transf. 53(19–20), 4047–4059 (2010)CrossRefMATHGoogle Scholar
  43. 43.
    Oterkus, S., Madenci, E., Agwai, A.: Fully coupled peridynamic thermomechanics. J. Mech. Phys. Solids 64, 1–23 (2014)MathSciNetCrossRefMATHADSGoogle Scholar
  44. 44.
    Oterkus, S.: Peridynamics for the Solution of Multiphysics Problems. The University of Arizona, Tucson (2015)Google Scholar
  45. 45.
    Madenci, E., Oterkus, S.: Peridynamics for coupled field equations. In: Bobaru, F., Foster, J.T., Geubelle, P.H., Silling, S.A. (eds.) Handbook of Peridynamic Modeling, pp. 489–531. Fl, Boca Raton (2016)Google Scholar
  46. 46.
    Oterkus, S., Madenci, E.: Fully coupled thermomechanical analysis of fiber reinforced composites using peridynamics. In: 55th AIAA/ASMe/ASCE/AHS/SC Structures, Structural Dynamics, and Materials Conference-SciTech Forum and Exposition, Maryland (2014)Google Scholar
  47. 47.
    Oterkus, S., Madenci, E.: Crack growth prediction in fully-coupled thermal and deformation fields using peridynamic theory. In: 54th AIAA Structures, Structural Dynamics and Materials Conference, Boston, Massachusetts (2013)Google Scholar
  48. 48.
    Silling, S.A., Askari, E.: A meshfree method based on the peridynamic model of solid mechanics. Comput. Struct. 83(17), 1526–1535 (2005)CrossRefGoogle Scholar
  49. 49.
    Madenci, E., Oterkus, E.: Peridynamic Theory and Its Applications. Springer, New York (2014)CrossRefMATHGoogle Scholar
  50. 50.
    Agwai, A.G.: A peridynamic approach for coupled fields. The University of Arizona, Tucson (2011)Google Scholar
  51. 51.
    Silling, S.A.: Linearized theory of peridynamic states. J. Elast. 99(1), 85–111 (2010)MathSciNetCrossRefMATHGoogle Scholar
  52. 52.
    Lord, H.W., Shulman, Y.: A generalized dynamical theory of thermoelasticity. J. Mech. Phys. Solids 15(5), 299–309 (1967)CrossRefMATHADSGoogle Scholar
  53. 53.
    Sackman, J.: Approximate solutions in linear, coupled thermoelasticity. J. Appl. Mech. 35, 255–266 (1968)CrossRefMATHGoogle Scholar
  54. 54.
    Hosseini-Tehrani, P., Eslami, M.R.: BEM analysis of thermal and mechanical shock in a two-dimensional finite domain considering coupled thermoelasticity. Eng. Anal. Bound Elem. 24(3), 249–257 (2000)CrossRefMATHGoogle Scholar
  55. 55.
    Kalthoff, J.F.: Modes of dynamic shear failure in solids. Int. J. Fract. 101(1), 1–31 (2000)CrossRefGoogle Scholar
  56. 56.
    Chadwick, P.: Thermo-mechanics of rubberlike materials. Philos.Trans. R. Soc. Lond. A: Math. Phys. Eng. Sci. 276(1260), 371–403 (1974)CrossRefMATHADSGoogle Scholar
  57. 57.
    Kalthoff, J., Winkler, S.: Failure mode transition at high rates of shear loading. DGM Informations gesellschaft mbH, Impact Loading Dyn. Beh. Mater. 1, 185–195 (1988)Google Scholar
  58. 58.
    Kalthoff, J.F.: Shadow optical analysis of dynamic shear fracture. In: SPIE. p. 6 (1988)Google Scholar
  59. 59.
    Borden, M.J., Verhoosel, C.V., Scott, M.A., Hughes, T.J.R., Landis, C.M.: A phase-field description of dynamic brittle fracture. Comput. Method Appl. Mech. 217–220, 77–95 (2012)MathSciNetCrossRefMATHGoogle Scholar
  60. 60.
    Batra, R.C., Ravinsankar, M.V.S.: Three-dimensional numerical simulation of the Kalthoff experiment. Int. J. Fract. 105(2), 161–186 (2000)CrossRefGoogle Scholar
  61. 61.
    Silling, S.: Peridynamic modeling of the Kalthoff–Winkler experiment. Submission for the (2001)Google Scholar
  62. 62.
    Dipasquale, D., Zaccariotto, M., Galvanetto, U.: Crack propagation with adaptive grid refinement in 2D peridynamics. Int. J. Fract. 190(1), 1–22 (2014)CrossRefGoogle Scholar

Copyright information

© The Author(s) 2018

Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Authors and Affiliations

  1. 1.Department of Naval Architecture, Ocean and Marine EngineeringUniversity of StrathclydeGlasgowUK

Personalised recommendations