Constitutive modeling of randomly oriented electrospun nanofibrous membranes
- 35 Downloads
Abstract
In this paper, a simple phenomenological model describing the macroscopic mechanical response of electrospun nanofibrous structures is proposed. Motivated by the experimental observation, the model development starts from the description of membrane response at fiber scale in order to capture individual fiber response and irreversible inter-fiber interactions using hyperelastic and large strain elasto-plastic frameworks, respectively. The macroscopic response is subsequently obtained by integrating the fiber responses in all possible fiber orientations. The efficiency of the proposed model is assessed using experimental data of PVDF electrospun nanofibrous membranes. It is found that the model is qualitatively in good agreement with uniaxial monotonic and cyclic tensile loading tests. Two other deformation modes, i.e., equibiaxial extension and pure shear (planar extension), are simulated to further evaluate the model responses. Finally, the deformation-induced fiber re-orientation is investigated for different modes of deformations.
Keywords
Constitutive modeling Nanofiber Membrane Mechanical response Large deformation ElectrospinningPreview
Unable to display preview. Download preview PDF.
Notes
References
- 1.Gopal, R., Kaur, S., Ma, Z., Chan, C., Ramakrishna, S., Matsuura, T.: Electrospun nanofibrous filtration membrane. J. Membr. Sci. 281(1), 581–586 (2006)CrossRefGoogle Scholar
- 2.Wang, R., Liu, Y., Li, B., Hsiao, B.S., Chu, B.: Electrospun nanofibrous membranes for high flux microfiltration. J. Membr. Sci. 392, 167–174 (2012)CrossRefGoogle Scholar
- 3.Liao, Y., Wang, R., Tian, M., Qiu, C., Fane, A.G.: Fabrication of polyvinylidene fluoride (PVDF) nanofiber membranes by electro-spinning for direct contact membrane distillation. J. Membr. Sci. 425, 30–39 (2013)CrossRefGoogle Scholar
- 4.Dehghan, S.F., Golbabaei, F., Maddah, B., Latifi, M., Pezeshk, H., Hasanzadeh, M., Akbar-Khanzadeh, F.: Optimization of electrospinning parameters for polyacrylonitrile-mgo nanofibers applied in air filtration. J. Air Waste Manag. Assoc. 66(9), 912–921 (2016)CrossRefGoogle Scholar
- 5.Nerurkar, N.L., Elliott, D.M., Mauck, R.L.: Mechanics of oriented electrospun nanofibrous scaffolds for annulus fibrosus tissue engineering. J. Orthopaed. Res. 25(8), 1018–1028 (2007)CrossRefGoogle Scholar
- 6.Pillay, V., Dott, C., Choonara, Y.E., Tyagi, C., Tomar, L., Kumar, P., du Toit, L.C., Ndesendo, V.M.K.: A review of the effect of processing variables on the fabrication of electrospun nanofibers for drug delivery applications. J. Nanomater. 2013, 22 (2013)CrossRefGoogle Scholar
- 7.Sill, T.J., von Recum, H.A.: Electrospinning: applications in drug delivery and tissue engineering. Biomaterials 29(13), 1989–2006 (2008)CrossRefGoogle Scholar
- 8.Jiang, T., Carbone, E.J., Lo, K.W.-H., Laurencin, C.T.: Electrospinning of polymer nanofibers for tissue regeneration. Prog. Polym. Sci. 46, 1–24 (2015)CrossRefGoogle Scholar
- 9.Yang, G.-Z., Li, J.-J., Yu, D.-G., He, M.-F., Yang, J.-H., Williams, G.R.: Nanosized sustained-release drug depots fabricated using modified tri-axial electrospinning. Acta Biomater. 53, 233–241 (2017)CrossRefGoogle Scholar
- 10.Zamani, M., Prabhakaran, M.P., Ramakrishna, S.: Advances in drug delivery via electrospun and electrosprayed nanomaterials. Int. J. Nanomed. 8(1), 2997–3017 (2013)Google Scholar
- 11.Deitzel, J., Kosik, W., McKnight, S., Tan, N.B., DeSimone, J.M., Crette, S.: Electrospinning of polymer nanofibers with specific surface chemistry. Polymer 43(3), 1025–1029 (2002)CrossRefGoogle Scholar
- 12.Gao, K., Hu, X., Dai, C., Yi, T.: Crystal structures of electrospun pvdf membranes and its separator application for rechargeable lithium metal cells. Mater. Sci. Eng. B 131(1), 100–105 (2006)CrossRefGoogle Scholar
- 13.Cozza, E.S., Monticelli, O., Marsano, E., Cebe, P.: On the electrospinning of PVDF: influence of the experimental conditions on the nanofiber properties. Polym. Int. 62(1), 41–48 (2013)CrossRefGoogle Scholar
- 14.Khanlou, H.M., Sadollah, A., Ang, B.C., Kim, J.H., Talebian, S., Ghadimi, A.: Prediction and optimization of electrospinning parameters for polymethyl methacrylate nanofiber fabrication using response surface methodology and artificial neural networks. Neural Comput. Appl. 25(3–4), 767–777 (2014)CrossRefGoogle Scholar
- 15.Cai, X., Zhu, P., Lu, X., Liu, Y., Lei, T., Sun, D.: Electrospinning of very long and highly aligned fibers. J. Mater. Sci. 52(24), 14004–14010 (2017)CrossRefGoogle Scholar
- 16.Lee, J.J.L., Ang, B.C., Andriyana, A., Shariful, M.I., Amalina, M.: Fabrication of PMMA/zeolite nanofibrous membrane through electrospinning and its adsorption behavior. J. Appl. Polym. Sci. 134(6), 1–13 (2017)CrossRefGoogle Scholar
- 17.Jearanaisilawong, P.: A continuum model for needlepunched nonwoven fabrics. Ph.D. Thesis, Massachusetts Institute of Technology (2008)Google Scholar
- 18.King, M., Jearanaisilawong, P., Socrate, S.: A continuum constitutive model for the mechanical behavior of woven fabrics. Int. J. Solids Struct. 42(13), 3867–3896 (2005)CrossRefzbMATHGoogle Scholar
- 19.Nadler, B., Papadopoulos, P., Steigmann, D.J.: Multiscale constitutive modeling and numerical simulation of fabric material. Int. J. Solids Struct. 43(2), 206–221 (2006)CrossRefzbMATHGoogle Scholar
- 20.Raina, A., Linder, C.: A homogenization approach for nonwoven materials based on fiber undulations and reorientation. J. Mech. Phys. Solids 65, 12–34 (2014)ADSMathSciNetCrossRefGoogle Scholar
- 21.Ridruejo, A., González, C., LLorca, J.: A constitutive model for the in-plane mechanical behavior of nonwoven fabrics. Int. J. Solids Struct. 49(17), 2215–2229 (2012)CrossRefGoogle Scholar
- 22.Shim, V., Tan, V., Tay, T.: Modelling deformation and damage characteristics of woven fabric under small projectile impact. Int. J. Impact Eng. 16(4), 585–605 (1995)CrossRefGoogle Scholar
- 23.Wei, X., Xia, Z., Wong, S.-C., Baji, A.: Modelling of mechanical properties of electrospun nanofibre network. Int. J. Exp. Comput. Biomech. 1(1), 45–57 (2009)CrossRefGoogle Scholar
- 24.Dupaix, R.B., Hosmer, J.E.D.: Mechanical characterization and finite strain constitutive modeling of electrospun polycaprolactone under cyclic loading. Int. J. Struct. Changes Sol. 2(1), 9–17 (2010)Google Scholar
- 25.Silberstein, M.N., Pai, C.-L., Rutledge, G.C., Boyce, M.C.: Elastic-plastic behavior of non-woven fibrous mats. J. Mech. Phys. Solids 60(2), 295–318 (2012)ADSCrossRefzbMATHGoogle Scholar
- 26.Arruda, E.M., Boyce, M.C.: A three-dimensional constitutive model for the large stretch behavior of rubber elastic materials. J. Mech. Phys. Solids 41(2), 389–412 (1993)ADSCrossRefzbMATHGoogle Scholar
- 27.Planas, J., Guinea, G., Elices, M.: Constitutive model for fiber-reinforced materials with deformable matrices. Phys. Rev. E 76(4), 041903 (2007)ADSCrossRefGoogle Scholar
- 28.Doshi, J., Reneker, D.H.: Electrospinning process and applications of electrospun fibers. J. Electrostat. 35(2–3), 151–160 (1995)CrossRefGoogle Scholar
- 29.Greiner, A., Wendorff, J.H.: Electrospinning: a fascinating method for the preparation of ultrathin fibers. Angew. Chem. Int. Ed. 46(30), 5670–5703 (2007)CrossRefGoogle Scholar
- 30.Baji, A., Mai, Y.-W., Wong, S.-C., Abtahi, M., Chen, P.: Electrospinning of polymer nanofibers: effects on oriented morphology, structures and tensile properties. Compos. Sci. Technol. 70(5), 703–718 (2010)CrossRefGoogle Scholar
- 31.Huang, Z.-M., Zhang, Y., Ramakrishna, S., Lim, C.: Electrospinning and mechanical characterization of gelatin nanofibers. Polymer 45(15), 5361–5368 (2004)CrossRefGoogle Scholar
- 32.Molnar, K., Vas, L.M., Czigany, T.: Determination of tensile strength of electrospun single nanofibers through modeling tensile behavior of the nanofibrous mat. Compos. Part B Eng. 43(1), 15–21 (2012)CrossRefGoogle Scholar
- 33.Wong, D., Andriyana, A., Ang, B.C., Verron, E.: Surface morphology and mechanical response of randomly oriented electrospun nanofibrous membrane. Polym. Test. 53, 108–115 (2016)CrossRefGoogle Scholar
- 34.Verron, E.: Questioning numerical integration methods for microsphere (and microplane) constitutive equations. Mech. Mater. 89, 216–228 (2015)CrossRefGoogle Scholar
- 35.Simo, J.C., Hughes, T.J.: Computational Inelasticity, vol. 7. Springer, New York (2006)zbMATHGoogle Scholar