Advertisement

Continuum Mechanics and Thermodynamics

, Volume 31, Issue 1, pp 255–272 | Cite as

Heat transfer in a one-dimensional harmonic crystal in a viscous environment subjected to an external heat supply

  • S. N. GavrilovEmail author
  • A. M. Krivtsov
  • D. V. Tsvetkov
Original Article

Abstract

We consider unsteady heat transfer in a one-dimensional harmonic crystal surrounded by a viscous environment and subjected to an external heat supply. The basic equations for the crystal particles are stated in the form of a system of stochastic differential equations. We perform a continualization procedure and derive an infinite set of linear partial differential equations for covariance variables. An exact analytic solution describing unsteady ballistic heat transfer in the crystal is obtained. It is shown that the stationary spatial profile of the kinetic temperature caused by a point source of heat supply of constant intensity is described by the Macdonald function of zero order. A comparison with the results obtained in the framework of the classical heat equation is presented. We expect that the results obtained in the paper can be verified by experiments with laser excitation of low-dimensional nanostructures.

Keywords

Ballistic heat transfer Harmonic crystal Kinetic temperature 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

References

  1. 1.
    Rieder, Z., Lebowitz, J., Lieb, E.: Properties of a harmonic crystal in a stationary nonequilibrium state. J. Math. Phys. 8(5), 1073–1078 (1967)ADSGoogle Scholar
  2. 2.
    Bonetto, F., Lebowitz, J., Rey-Bellet, L.: Fourier’s law: a challenge to theorists. In: Fokas, A., Grigoryan, A., Kibble, T., Zegarlinski, B. (eds.) Mathematical Physics 2000. World Scientific, Singapore (2000)Google Scholar
  3. 3.
    Lepri, S., Livi, R., Politi, A.: Thermal conduction in classical low-dimensional lattices. Phys. Rep. 377(1), 1–80 (2003)ADSMathSciNetGoogle Scholar
  4. 4.
    Lepri, S., Livi, R., Politi, A.: On the anomalous thermal conductivity of one-dimensional lattices. Europhys. Lett. 43(3), 271 (1998)ADSGoogle Scholar
  5. 5.
    Dhar, A.: Heat transport in low-dimensional systems. Adv. Phys. 57(5), 457–537 (2008)ADSGoogle Scholar
  6. 6.
    Lepri, S.: Thermal Transport in Low Dimensions: From Statistical Physics to Nanoscale Heat Transfer. Springer, Berlin (2016)Google Scholar
  7. 7.
    Casati, G., Ford, J., Vivaldi, F., Visscher, W.: One-dimensional classical many-body system having a normal thermal conductivity. Phys. Rev. Lett. 52(21), 1861–1864 (1984)ADSGoogle Scholar
  8. 8.
    Aoki, K., Kusnezov, D.: Bulk properties of anharmonic chains in strong thermal gradients: non-equilibrium \(\varphi ^4\) theory. Phys. Lett. A 265(4), 250–256 (2000)ADSMathSciNetzbMATHGoogle Scholar
  9. 9.
    Gendelman, O., Savin, A.: Normal heat conductivity in chains capable of dissociation. Europhys. Lett. 106(3), 34,004 (2014)Google Scholar
  10. 10.
    Savin, A., Kosevich, Y.: Thermal conductivity of molecular chains with asymmetric potentials of pair interactions. Phys. Rev. E 89(3), 032,102 (2014)Google Scholar
  11. 11.
    Gendelman, O., Savin, A.: Heat conduction in a chain of colliding particles with a stiff repulsive potential. Phys. Rev. E 94(5), 052,137 (2016)Google Scholar
  12. 12.
    Spohn, H.: Fluctuating hydrodynamics approach to equilibrium time correlations for anharmonic chains. In: Lepri, S. (ed.) Thermal Transport in Low Dimensions: From Statistical Physics to Nanoscale Heat Transfer. Lecture Notes in Physics, pp. 107–158. Springer (2016)Google Scholar
  13. 13.
    Bonetto, F., Lebowitz, J., Lukkarinen, J.: Fourier’s law for a harmonic crystal with self-consistent stochastic reservoirs. J. Stat. Phys. 116(1), 783–813 (2004)ADSMathSciNetzbMATHGoogle Scholar
  14. 14.
    Le-Zakharov, A., Krivtsov, A.: Molecular dynamics investigation of heat conduction in crystals with defects. Dokl. Phys. 53(5), 261–264 (2008)ADSzbMATHGoogle Scholar
  15. 15.
    Chang, C., Okawa, D., Garcia, H., Majumdar, A., Zettl, A.: Breakdown of Fourier’s law in nanotube thermal conductors. Phys. Rev. Lett. 101(7), 075,903 (2008)Google Scholar
  16. 16.
    Xu, X., Pereira, L., Wang, Y., Wu, J., Zhang, K., Zhao, X., Bae, S., Bui, C., Xie, R., Thong, J., Hong, B., Loh, K., Donadio, D., Li, B., Özyilmaz, B.: Length-dependent thermal conductivity in suspended single-layer graphene. Nat. Commun. 5, 3689 (2014)Google Scholar
  17. 17.
    Hsiao, T., Huang, B., Chang, H., Liou, S., Chu, M., Lee, S., Chang, C.: Micron-scale ballistic thermal conduction and suppressed thermal conductivity in heterogeneously interfaced nanowires. Phys. Rev. B 91(3), 035,406 (2015)Google Scholar
  18. 18.
    Cahill, D., Ford, W., Goodson, K., Mahan, G., Majumdar, A., Maris, H., Merlin, R., Phillpot, S.: Nanoscale thermal transport. J. Appl. Phys. 93(2), 793–818 (2003)ADSGoogle Scholar
  19. 19.
    Liu, S., Xu, X., Xie, R., Zhang, G., Li, B.: Anomalous heat conduction and anomalous diffusion in low dimensional nanoscale systems. Eur. Phys. J. B 85, 337 (2012)ADSGoogle Scholar
  20. 20.
    Chang, C.: Experimental probing of non-Fourier thermal conductors. In: Lepri, S. (ed.) Thermal Transport in Low Dimensions: From Statistical Physics to Nanoscale Heat Transfer. Lecture Notes in Physics, vol. 921, pp. 305–338. Springer (2016)Google Scholar
  21. 21.
    Peierls, R.: Quantum Theory of Solids. Oxford University Press, Oxford (1955)zbMATHGoogle Scholar
  22. 22.
    Ziman, J.: Electrons and Phonons: The Theory of Transport Phenomena in Solids. Oxford University Press, Oxford (1960)zbMATHGoogle Scholar
  23. 23.
    Hsiao, T., Chang, H., Liou, S., Chu, M., Lee, S., Chang, C.: Observation of room-temperature ballistic thermal conduction persisting over 8.3 \(\mu \)m in SiGe nanowires. Nat. Nanotechnol. 8(7), 534–538 (2013)ADSGoogle Scholar
  24. 24.
    Kannan, V., Dhar, A., Lebowitz, J.: Nonequilibrium stationary state of a harmonic crystal with alternating masses. Phys. Rev. E 85(4), 041,118 (2012)Google Scholar
  25. 25.
    Dhar, A., Dandekar, R.: Heat transport and current fluctuations in harmonic crystals. Physica A 418, 49–64 (2015)ADSMathSciNetzbMATHGoogle Scholar
  26. 26.
    Allen, K., Ford, J.: Energy transport for a three-dimensional harmonic crystal. Phys. Rev. 187(3), 1132 (1969)ADSGoogle Scholar
  27. 27.
    Nakazawa, H.: On the lattice thermal conduction. Prog. Theor. Phys. Suppl. 45, 231–262 (1970)ADSGoogle Scholar
  28. 28.
    Lee, L., Dhar, A.: Heat conduction in a two-dimensional harmonic crystal with disorder. Phys. Rev. Lett. 95(9), 094,302 (2005)Google Scholar
  29. 29.
    Kundu, A., Chaudhuri, A., Roy, D., Dhar, A., Lebowitz, J., Spohn, H.: Heat conduction and phonon localization in disordered harmonic crystals. Europhys. Lett. 90(4), 40,001 (2010)Google Scholar
  30. 30.
    Dhar, A., Saito, K.: Heat transport in harmonic systems. In: Lepri, S. (ed.) Thermal Transport in Low Dimensions: From Statistical Physics to Nanoscale Heat Transfer. Lecture Notes in Physics, vol. 921, pp. 39–106. Springer (2016)Google Scholar
  31. 31.
    Bernardin, C., Kannan, V., Lebowitz, J., Lukkarinen, J.: Harmonic systems with bulk noises. J. Stat. Phys. 146(4), 800–831 (2012)ADSMathSciNetzbMATHGoogle Scholar
  32. 32.
    Freitas, N., Paz, J.: Analytic solution for heat flow through a general harmonic network. Phys. Rev. E 90(4), 042,128 (2014)Google Scholar
  33. 33.
    Freitas, N., Paz, J.: Erratum: analytic solution for heat flow through a general harmonic network. Phys. Rev. E 90(6), 069,903 (2014)Google Scholar
  34. 34.
    Hoover, W., Hoover, C.: Hamiltonian thermostats fail to promote heat flow. Commun. Nonlinear Sci. Numer. Simul. 18(12), 3365–3372 (2013)ADSMathSciNetzbMATHGoogle Scholar
  35. 35.
    Lukkarinen, J., Marcozzi, M., Nota, A.: Harmonic chain with velocity flips: thermalization and kinetic theory. J. Stat. Phys. 165(5), 809–844 (2016)ADSMathSciNetzbMATHGoogle Scholar
  36. 36.
    Gendelman, O., Shvartsman, R., Madar, B., Savin, A.: Nonstationary heat conduction in one-dimensional models with substrate potential. Phys. Rev. E 85(1), 011,105 (2012)Google Scholar
  37. 37.
    Tsai, D., MacDonald, R.: Molecular-dynamical study of second sound in a solid excited by a strong heat pulse. Phys. Rev. E 14(10), 4714 (1976)ADSGoogle Scholar
  38. 38.
    Ladd, A., Moran, B., Hoover, W.: Lattice thermal conductivity: a comparison of molecular dynamics and anharmonic lattice dynamics. Phys. Rev. E 34(8), 5058 (1986)ADSGoogle Scholar
  39. 39.
    Volz, S., Saulnier, J.B., Lallemand, M., Perrin, B., Depondt, P., Mareschal, M.: Transient Fourier-law deviation by molecular dynamics in solid argon. Phys. Rev. E 54(1), 340 (1996)Google Scholar
  40. 40.
    Daly, B., Maris, H., Imamura, K., Tamura, S.: Molecular dynamics calculation of the thermal conductivity of superlattices. Phys. Rev. E 66(2), 024,301 (2002)Google Scholar
  41. 41.
    Gendelman, O., Savin, A.: Nonstationary heat conduction in one-dimensional chains with conserved momentum. Phys. Rev. E 81(2), 020,103 (2010)Google Scholar
  42. 42.
    Babenkov, M., Krivtsov, A., Tsvetkov, D.: Energy oscillations in a one-dimensional harmonic crystal on an elastic substrate. Phys. Mesomech. 19(3), 282–290 (2016)Google Scholar
  43. 43.
    Krivtsov, A.: Heat transfer in infinite harmonic one-dimensional crystals. Dokl. Phys. 60(9), 407–411 (2015)ADSGoogle Scholar
  44. 44.
    Krivtsov, A.: Energy oscillations in a one-dimensional crystal. Dokl. Phys. 59(9), 427–430 (2014)Google Scholar
  45. 45.
    Hoover, W., Hoover, C.: Simulation and Control of Chaotic Nonequilibrium Systems. World Scientific, Singapore (2015)zbMATHGoogle Scholar
  46. 46.
    Krivtsov, A.: From nonlinear oscillations to equation of state in simple discrete systems. Chaos Solitons Fractals 17(1), 79–87 (2003)ADSzbMATHGoogle Scholar
  47. 47.
    Berinskii, I.: Elastic networks to model auxetic properties of cellular materials. Int. J. Mech. Sci. 115, 481–488 (2016)Google Scholar
  48. 48.
    Kuzkin, V., Krivtsov, A., Podolskaya, E., Kachanov, M.: Lattice with vacancies: elastic fields and effective properties in frameworks of discrete and continuum models. Philos. Mag. 96(15), 1538–1555 (2016)ADSGoogle Scholar
  49. 49.
    Berinskii, I., Krivtsov, A.: Linear oscillations of suspended graphene. In: Shell and Membrane Theories in Mechanics and Biology, pp. 99–107. Springer, Cham (2015)Google Scholar
  50. 50.
    Berinskii, I., Krivtsov, A.: A hyperboloid structure as a mechanical model of the carbon bond. Int. J. Solids Struct. 96, 145–152 (2016)Google Scholar
  51. 51.
    Shishkina, E., Gavrilov, S.: A strain-softening bar with rehardening revisited. Math. Mech. Solids 21(2), 137–151 (2016)MathSciNetzbMATHGoogle Scholar
  52. 52.
    Gavrilov, S.: Dynamics of a free phase boundary in an infinite bar with variable cross-sectional area. ZAMM—J. Appl. Math. Mech. / Z. Angew. Math. Mech. 87(2), 117–127 (2007)MathSciNetzbMATHGoogle Scholar
  53. 53.
    Gavrilov, S., Shishkina, E.: On stretching of a bar capable of undergoing phase transitions. Contin. Mech. Thermodyn. 22, 299–316 (2010)ADSMathSciNetzbMATHGoogle Scholar
  54. 54.
    Gavrilov, S., Shishkina, E.: A strain-softening bar revisited. ZAMM—J. Appl. Math. Mech. / Z. Angew. Math. Mech. 95(12), 1521–1529 (2015)MathSciNetzbMATHGoogle Scholar
  55. 55.
    Shishkina, E., Gavrilov, S.: Stiff phase nucleation in a phase-transforming bar due to the collision of non-stationary waves. Arch. Appl. Mech. 87(6), 1019–1036 (2017)ADSGoogle Scholar
  56. 56.
    Gavrilov, S., Herman, G.: Wave propagation in a semi-infinite heteromodular elastic bar subjected to a harmonic loading. J. Sound Vib. 331(20), 4464–4480 (2012)ADSGoogle Scholar
  57. 57.
    Krivtsov, A.: On heat transfer in a thermally perturbed harmonic chain. arXiv:1709.07924 (2017)
  58. 58.
    Chandrasekharalah, D.: Thermoelasticity with second sound: a review. Appl. Mech. Rev. 39(3), 355 (1986)ADSGoogle Scholar
  59. 59.
    Tzou, D.: Macro-to Microscale Heat Transfer: The Lagging Behavior. Wiley, Hoboken (2014)Google Scholar
  60. 60.
    Cattaneo, C.: Sur une forme de l’équation de la chaleur éliminant le paradoxe d’une propagation instantanée. C. R. L’Acad. Sci. 247(4), 431–433 (1958)zbMATHGoogle Scholar
  61. 61.
    Vernotte, P.: Les paradoxes de la théorie continue de léquation de la chaleur. C. R. L’Acad. Sci. 246(22), 3154–3155 (1958)zbMATHGoogle Scholar
  62. 62.
    Kuzkin, V., Krivtsov, A.: An analytical description of transient thermal processes in harmonic crystals. Phys. Solid State 59(5), 1051–1062 (2017)ADSGoogle Scholar
  63. 63.
    Kuzkin, V., Krivtsov, A.: Fast and slow thermal processes in harmonic scalar lattices. J. Phys. Condens. Matter 29(50), 505,401 (2017)Google Scholar
  64. 64.
    Indeitsev, D., Osipova, E.: A two-temperature model of optical excitation of acoustic waves in conductors. Dokl. Phys. 62(3), 136–140 (2017)ADSGoogle Scholar
  65. 65.
    Andrews, L.: Special Functions of Mathematics for Engineers. SPIE Publications, Bellingham (1997)Google Scholar
  66. 66.
    Kloeden, P., Platen, E.: Numerical Solution of Stochastic Differential Equations. Springer, Berlin (1999)zbMATHGoogle Scholar
  67. 67.
    Stepanov, S.: Stochastic World. Springer, Berlin (2013)zbMATHGoogle Scholar
  68. 68.
    Langevin, P.: Sur la théorie du mouvement brownien. C. R. L’Acad. Sci. 146(530–533), 530 (1908)zbMATHGoogle Scholar
  69. 69.
    Lemons, D., Gythiel, A.: Paul Langevin’s 1908 paper on the theory of Brownian motion ["Sur la théorie du mouvement brownien"]. Am. J. Phys. 65(11), 1079–1081 (1997)ADSGoogle Scholar
  70. 70.
    Krivtsov, A.: Dynamics of heat processes in one-dimensional harmonic crystals. In: Problems of Mathematical Physics and Applied Mathematics: Proceedings of the Seminar in Honor of Prof. E.A. Tropp’s 75th Anniversary, pp. 63–81. Ioffe Institute, St. Petersburg (2016) (in Russian)Google Scholar
  71. 71.
    Vladimirov, V.: Equations of Mathematical Physics. Marcel Dekker, New York (1971)zbMATHGoogle Scholar
  72. 72.
    Lepri, S., Mejía-Monasterio, C., Politi, A.: Nonequilibrium dynamics of a stochastic model of anomalous heat transport. J. Phys. A 43(6), 065,002 (2010)MathSciNetzbMATHGoogle Scholar
  73. 73.
    Nayfeh, A.: Perturbation Methods. Wiley, Hoboken (2008)Google Scholar
  74. 74.
    Krivtsov, A.: On unsteady heat conduction in a harmonic crystal. arXiv:1509.02506 (2015)
  75. 75.
    Brigham, E.: The Fast Fourier Transform and Its Applications. Prentice Hall, Upper Saddle River (1974)zbMATHGoogle Scholar
  76. 76.
    Slepyan, L., Yakovlev, Y.: Integral transform in non-stationary problems of mechanics. Sudostroenie (1980) (in Russian)Google Scholar
  77. 77.
    Gel’fand, I., Shilov, G.: Generalized Functions. Properties and Operations, vol. 1. Academic Press, New York (1964)zbMATHGoogle Scholar
  78. 78.
    Polyanin, A.: Handbook of Linear Partial Differential Equations for Engineers and Scientists. Chapman & Hall/CRC, Boca Raton (2002)zbMATHGoogle Scholar
  79. 79.
    Prudnikov, A., Brychkov, Y., Marichev, O.: Integrals and Series. Elementary Functions, vol. 1. Gordon & Breach, New York (1986)zbMATHGoogle Scholar
  80. 80.
    Aleixo, R., Oliveira, E.: Green’s function for the lossy wave equation. Rev. Bras. Ensino Fis. 30(1), 1302 (2008)Google Scholar
  81. 81.
    Goldstein, R., Morozov, N.: Mechanics of deformation and fracture of nanomaterials and nanotechnology. Phys. Mesomech. 10(5–6), 235–246 (2007)Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Institute for Problems in Mechanical Engineering RASSt. PetersburgRussia
  2. 2.Peter the Great St. Petersburg Polytechnic UniversitySt. PetersburgRussia

Personalised recommendations